Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids

Not Accessible

Your library or personal account may give you access

Abstract

A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The tapered all-solid WAF is fabricated by using a fusion splicer, and the sensor is formed by immersing the tapered all-solid WAF into the MF. The transmission spectra have been measured and analyzed under different magnetic-field intensities. Experimental results show that the acquired magnetic-field sensitivity is 44.57 pm/Oe for a linear magnetic-field intensity range from 50 to 200 Oe. All-solid WAF has very similar thermal expansion coefficient for high- and low-refractive-index glasses, so mode profile is not affected by thermal drifts. Also, magnetically induced refractive-index changes into the ferrofluid are of the order of 5×102, while the corresponding thermally induced refractive-index changes into the ferrofluid are expected to be lower. The temperature response has also been detected, and the temperature-induced wavelength shift perturbation is less than 0.3 nm from temperature of 26.9°C–44°C. The proposed magnetic-field sensor has such advantages as low temperature sensitivity, simple structure, and ease of fabrication. It also indicates that the magnetic-field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid

Aseel Mahmood, Vishnu Kavungal, Sudad S. Ahmed, Gerald Farrell, and Yuliya Semenova
Opt. Lett. 40(21) 4983-4986 (2015)

Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid

Longfeng Luo, Shengli Pu, Jiali Tang, Xianglong Zeng, and Mahieddine Lahoubi
Opt. Express 23(14) 18133-18142 (2015)

High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference

Bing Sun, Fang Fang, Zuxing Zhang, Jing Xu, and Lin Zhang
Opt. Lett. 43(6) 1311-1314 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved