Abstract

Multi-exposure speckle imaging (MESI) is a camera-based flow-imaging technique for quantitative blood-flow monitoring by mapping the speckle-contrast dependence on camera exposure duration. The ability of laser speckle contrast imaging to measure the temporal dynamics of backscattered and interfering coherent fields, in terms of the accuracy of autocorrelation measurements, is a major unresolved issue in quantitative speckle flowmetry. MESI fits for a number of parameters including an estimate of the electric field autocorrelation decay time from the imaged speckles. We compare the MESI-determined correlation times in vitro and in vivo with accepted true values from direct temporal measurements acquired with a photon-counting photon-multiplier tube and an autocorrelator board. The correlation times estimated by MESI in vivo remain on average within 14±11% of those obtained from direct temporal autocorrelation measurements, demonstrating that MESI yields highly comparable statistics of the time-varying fields that can be useful for applications seeking not only quantitative blood flow dynamics but also absolute perfusion.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation

S. M. Shams Kazmi, Satyajit Balial, and Andrew K. Dunn
Biomed. Opt. Express 5(7) 2157-2171 (2014)

Robust flow measurement with multi-exposure speckle imaging

Ashwin B. Parthasarathy, W. James Tom, Ashwini Gopal, Xiaojing Zhang, and Andrew K. Dunn
Opt. Express 16(3) 1975-1989 (2008)

Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging

Ashwin B. Parthasarathy, S. M. Shams Kazmi, and Andrew K. Dunn
Biomed. Opt. Express 1(1) 246-259 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription