Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ball/dumbbell-like structured micrometer-sized Sb2S3 particles as a scattering layer in dye-sensitized solar cells

Not Accessible

Your library or personal account may give you access

Abstract

To improve the light harvesting efficiency in dye-sensitized solar cells (DSSC) the light scattering layer is important. In this Letter, we present ball/dumbbell-like structured micrometer-sized Sb2S3 particles for photon propagation in DSSCs and demonstrate their effective usage in photoelectrodes. The analysis of the photoelectrode by a UV-vis spectrophotometer indicates that the absorption wavelength of an electrode with scattering layer can be obviously promoted from ultraviolet to visible light. The synthesized Sb2S3 particle structures were also characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The photovoltaic performance of the ball/dumbbell-like structured Sb2S3 based cell exhibits excellent power conversion efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Double-layered TiO2 photoelectrode with particulate structure prepared by one-step soaking method

Mi Sun Park, Sang-Ju Lee, Shi-Joon Sung, and Dae-Hwan Kim
Opt. Mater. Express 4(11) 2401-2408 (2014)

Improved performance of dye-sensitized solar cells using dual-function TiO2 nanowire photoelectrode

Zico Alaia Akbar, Ji Hye Oh, Wisnu Tantyo Hadmojo, Su Ji Yang, Young Rag Do, and Sung-Yeong Jang
Opt. Express 23(19) A1280-A1287 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.