Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Compositional dependence of room-temperature Stark splitting of Yb3+ in several popular glass systems

Not Accessible

Your library or personal account may give you access

Abstract

The room-temperature Stark splitting properties of Yb3+ are practical and valuable for lasers because the working temperature of the gain media intensively increases with the laser output. In this Letter, the room-temperature Stark splitting properties of Yb3+ in several popular laser glasses are contrastively studied. Yb3+-doped germanate (Ge), borate (B), silicate (Si), bismuthate (Bi), tellurite (Te), and fluorophosphate (FP) glasses exhibit large Stark splitting and tend to operate close to the quasi-four-level scheme, whereas phosphate (P) glass shows the weakest Stark splitting and tends to operate close to the quasi-three-level one. Due to the low thermal conductivity of the glass matrix, Yb3+-doped P glass suffers from serious thermal problems and is difficult to achieve high laser output. The Stark splitting is also used to estimate the crystal-field strength of glass hosts and local Yb3+ ligand asymmetry degree. The results show that P glass shows weaker crystal-field effect and lower Yb3+ ligand asymmetry than Ge, Si, and B glasses.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Influence of Stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses

Liyan Zhang, Tianfeng Xue, Dongbing He, Malgorzata Guzik, and Georges Boulon
Opt. Express 23(2) 1505-1511 (2015)

Ho3+/Yb3+-codoped germanate–tellurite glasses for 2.0  μm emission performance

Ya-Pei Peng, Yanyan Guo, Junjie Zhang, and Long Zhang
Appl. Opt. 53(8) 1564-1569 (2014)

Raman investigation and glass-compositional dependence on blue up-conversion photoluminescence for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses

M. Uchida, T. Hayakawa, T. Suhara, J-R. Duclère, and P. Thomas
Opt. Mater. Express 4(4) 823-835 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.