Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-efficiency light-trapping effect using silver nanoparticles on thin amorphous silicon subwavelength structure

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we experimentally demonstrate a hybrid structure consisting of metal nanoparticles deposited onto a subwavelength structure (SWS), which further increases the absorption of thin amorphous silicon (a-Si) and can possibly lead to a reduction in the minimum required thickness of the a-Si layer. Experimental results show that backscattering of the silver nanoparticles (Ag NPs) deposited on the top surface can be suppressed dramatically (by 85.5%) by the Ag NPs deposited on the SWS. We also experimentally prove that the thin a-Si SWS only lowers the surface reflectivity and does not increase the absorption rate of the material. The absorption of the thin a-Si layer can be increased by depositing Ag NPs onto a thin a-Si SWS, which not only reduces the backscattering of the metal NPs but also increases the light-trapping effect within thin a-Si through localized surface plasmon resonance properties. This decrease of reflection and increase in the light-trapping effect of Ag NPs on cone-shaped thin a-Si SWSs leads to extremely high average absorption (86.14%) within a 400 nm thick a-Si layer.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
AuAg bimetallic nonalloyed nanoparticles on a periodically nanostructured GaAs substrate for enhancing light trapping

Soo Kyung Lee, Chee Leong Tan, Gun Wu Ju, Jae Hong Song, Chan Il Yeo, and Yong Tak Lee
Opt. Lett. 40(24) 5798-5801 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.