Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transverse load sensing based on a dual-frequency optoelectronic oscillator

Not Accessible

Your library or personal account may give you access

Abstract

We propose and experimentally demonstrate a fiber-optic sensor implemented based on a dual-frequency optoelectronic oscillator (OEO) for transverse load sensing. In the OEO loop, a phase-shifted fiber Bragg grating (PS-FBG) is employed to which a transverse load is applied to introduce a birefringence to create two orthogonally polarized notches, which leads to the generation of two oscillating frequencies. The beat frequency between the two oscillating frequencies is a function of the load force applied to the PS-FBG. The proposed sensor is experimentally demonstrated. The sensitivity and the minimal detectable load are measured to be as high as 9.73GHz/(N/mm) and 2.06×104N/mm, respectively. The high-frequency purity and stability of the generated microwave signal by the OEO permit extremely reliable and high-accuracy measurement. The frequency interrogation allows the system to operate at an ultra-high speed. In addition, the sensing signal is insensitive to the variations of both the environmental temperature and the optical carrier wavelength.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter

Bin Yin, Muguang Wang, Songhua Wu, Yu Tang, Suchun Feng, and Hongwei Zhang
Opt. Express 25(13) 14106-14113 (2017)

Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters

Beilei Wu, Muguang Wang, Yue Dong, Yu Tang, Hongqian Mu, Haisu Li, Bin Yin, Fengping Yan, and Zhen Han
Opt. Express 26(21) 27628-27638 (2018)

Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop

Zuowei Xu, Xuewen Shu, and Hongyan Fu
Opt. Express 27(16) 23274-23281 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.