Abstract

We propose a closed form formulation for the impedance of the metal–insulator–metal (MIM) plasmonic transmission lines by solving the Maxwell’s equations. We provide approximations for thin and thick insulator layers sandwiched between metallic layers. In the case of very thin dielectric layer, the surface waves on both interfaces are strongly coupled resulting in an almost linear dependence of the impedance of the plasmonic transmission line on the thickness of the insulator layer. On the other hand, for very thick insulator layer, the impedance does not vary with the insulator layer thickness due to the weak-coupling/decoupling of the surface waves on each metal–insulator interface. We demonstrate the effectiveness of our proposed formulation using two test scenarios, namely, almost zero reflection in T-junction and reflection from line discontinuity in the design of Bragg reflectors, where we compare our formulation against previously published results.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors

Amir Hosseini, Hamid Nejati, and Yehia Massoud
Opt. Express 16(3) 1475-1480 (2008)

Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks

Mengyuan Zhang and Zhiguo Wang
Opt. Express 27(1) 303-321 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription