Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum memory in warm rubidium vapor with buffer gas

Not Accessible

Your library or personal account may give you access

Abstract

The realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly copropagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 μs.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors

Radosław Chrapkiewicz and Wojciech Wasilewski
Opt. Express 20(28) 29540-29552 (2012)

Absorption resonance and large negative delay in rubidium vapor with a buffer gas

Eugeniy E. Mikhailov, Vladimir A. Sautenkov, Yuri V. Rostovtsev, and George R. Welch
J. Opt. Soc. Am. B 21(2) 425-428 (2004)

Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell

Xiaobo Xue, Zhiming Tao, Qinqing Sun, Yelong Hong, Wei Zhuang, Bin Luo, Jingbiao Chen, and Hong Guo
Opt. Lett. 37(12) 2274-2276 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved