Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Intense short-pulse lasers irradiating wire and hollow plasma fibers

Not Accessible

Your library or personal account may give you access

Abstract

When an intense laser pulse irradiates a solid-density foil target, electrons produced at the relativistic critical density can be accelerated to relativistic energy by the ponderomotive force. When a plasma fiber is attached to the back of the foil, the produced relativistic electrons are guided to propagate along the fiber for a long distance, because the high-current electron beam induces strong radial electric fields in the fiber. Transport and heating of intense laser-driven relativistic electrons in both wire and hollow plasma fibers are compared theoretically and numerically. We found that the coupling efficiency from the laser to the plasma fiber depends on the fiber structure. Because of the enhanced return currents in the wire fiber, the temperature in the wire fiber is higher than that in the hollow fiber.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Large-amplitude plasma wave generation with a high-intensity short-pulse beat wave

B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Malka
Opt. Lett. 27(24) 2203-2205 (2002)

Intense attosecond pulses from laser-irradiated near-critical-density plasmas

Yuxue Zhang, Bin Qiao, Xinrong Xu, Hengxin Chang, Haiyang Lu, Cangtao Zhou, Hua Zhang, Shaoping Zhu, Matthew Zepf, and Xiantu He
Opt. Express 25(23) 29058-29067 (2017)

Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target

Han-Zhen Li, Tong-Pu Yu, Li-Xiang Hu, Yan Yin, De-Bin Zou, Jian-Xun Liu, Wei-Quan Wang, Shun Hu, and Fu-Qiu Shao
Opt. Express 25(18) 21583-21593 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved