Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nanoparticle plasmon resonances in the near-static limit

Not Accessible

Your library or personal account may give you access

Abstract

Localized surface plasmon resonances of metal nanoparticles of arbitrary shape are analyzed in the near-static limit with retardation included to the second order. Starting from the electrostatic approximation, the second-order correction to the resonant dielectric constant is expressed by means of a triple surface integral. For arbitrary nano particles with cylindrical symmetry we show how the triple surface integral can be significantly simplified, resulting in a computationally efficient scheme for evaluation of nanoparticle plasmon eigenresonances in the near-static limit. The approach allows for calculation of both dipolar and higher-order resonances.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Magnetically tunable surface plasmon resonance based on a composite consisting of noble metal nanoparticles and a ferromagnetic thin film

Chih-Ming Wei, Chih-Wei Chen, Chun-Hsiung Wang, Ju-Ying Chen, Yu-Chuan Chen, and Yang-Fang Chen
Opt. Lett. 36(4) 514-516 (2011)

Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces

Rogelio Rodríguez-Oliveros and José A. Sánchez-Gil
Opt. Express 19(13) 12208-12219 (2011)

Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors

Michail J. Beliatis, Simon J. Henley, and S. Ravi P. Silva
Opt. Lett. 36(8) 1362-1364 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.