Abstract
We present an analytical proof of the existence of unidirectional optical Bloch oscillations in a waveguide array system. It is shown that the presence of nonreciprocity in the system allows for a complete normal-mode dephasing in one of the propagation directions, resulting in a unidirectional breakdown in Bloch oscillations. A model system consisting of an array of transversely magnetized asymmetric waveguides with a magneto-optic cover layer is presented. Large index contrasts between film and cover are critical for practical realizations.
© 2011 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (5)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription