Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity

Not Accessible

Your library or personal account may give you access

Abstract

A high-temperature sensor based on a Mach–Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed and fabricated by concatenating two microcavities separated by a middle section. A femtosecond laser is used to fabricate a microhole on the center of a fiber end. Then a micro-air-cavity is formed by splicing the microholed fiber end with a normal fiber end. The interferometer is applied for high-temperature sensing, in the range of 5001200°C, with a sensitivity of 109pm/°C that, to the best of our knowledge, is highest in silica fiber temperature sensors. Also, the interferometer is insensitive to external refractive index (RI), which is desirable for temperature sensors.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai
Appl. Opt. 50(28) 5503-5507 (2011)

Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air cavity for high-temperature sensing

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang
Opt. Lett. 37(24) 5082-5084 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.