Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media

Not Accessible

Your library or personal account may give you access

Abstract

This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell’s equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media

Xiang-Hua Wang, Wen-Yan Yin, and Zhi Zhang (David) Chen
Opt. Express 21(18) 20565-20576 (2013)

Generalized tensor FDTD method for sloped dispersive interfaces and thin sheets

Qiming Zhao and Costas D. Sarris
Opt. Express 27(11) 15812-15826 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved