## Abstract

In this Letter, we propose a generic nonlinear coupling coefficient, ${\eta}_{\mathrm{NL}}^{2}=\eta |\gamma /{\beta}_{2}{|}_{\text{fiber}2}/|\gamma /{\beta}_{2}{|}_{\text{fiber}1}$, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use ${\eta}_{\mathrm{NL}}$ to demonstrate a significant soliton self- frequency shift of a fundamental soliton, and we show that nonlinear matching can take precedence over linear mode matching. The nonlinear coupling coefficient depends on both the dispersion (${\beta}_{2}$) and nonlinearity (*γ*), as well as on the power coupling efficiency *η*. Being generic, ${\eta}_{\mathrm{NL}}$ enables engineering of general waveguide systems, e.g., for optimized Raman redshift or supercontinuum generation.

© 2011 Optical Society of America

Full Article | PDF Article**OSA Recommended Articles**

Mario Chemnitz, Ramona Scheibinger, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Sebastian Pumpe, Jens Kobelke, Andreas Tünnermann, Jens Limpert, and Markus A. Schmidt

Optica **5**(6) 695-703 (2018)

Mario Chemnitz, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Jens Kobelke, Andreas Tünnermann, Jens Limpert, and Markus A. Schmidt

Opt. Express **26**(3) 3221-3235 (2018)

Matteo Conforti, Andrea Marini, Truong X. Tran, Daniele Faccio, and Fabio Biancalana

Opt. Express **21**(25) 31239-31252 (2013)