Abstract

The dependence of the Brillouin frequency shift (BFS) on UV-cured acrylate coating and uncoated fibers for media that have different water vapor concentrations is experimentally investigated. The BFS is proportional to the temperature within the fiber, but it also depends on the water vapor contained in the surroundings of the fiber. A hypothesis based on the efficiency of the heat transfer due to the different humidity concentration in the media is proposed, and the temperature difference that depends on the heat transfer is quantified in standard fibers. A shift of 0.22MHz for relative humidity change between 60% and 98% at 20°C is measured.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Humidity-induced Brillouin frequency shift in perfluorinated polymer optical fibers

Andy Schreier, Aleksander Wosniok, Sascha Liehr, and Katerina Krebber
Opt. Express 26(17) 22307-22314 (2018)

Dependence of Brillouin frequency shift on radial and axial strain in silica optical fibers

Haidong Gu, Huijuan Dong, Guangyu Zhang, Yongkang Dong, and Jun He
Appl. Opt. 51(32) 7864-7868 (2012)

Performance analysis of frequency shift estimation techniques in Brillouin distributed fiber sensors

Shahna M Haneef, Zhisheng Yang, Luc Thévenaz, Deepa Venkitesh, and Balaji Srinivasan
Opt. Express 26(11) 14661-14677 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription