Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient method for launching in-gap solitons in fiber Bragg gratings using a two-segment apodization profile

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically demonstrate what is a new method for efficient launching of in-gap solitons in fiber Bragg gratings. The method is based on generating a soliton outside the grating bandgap. Then, the soliton is adiabatically coupled into the bandgap by using its particlelike behavior. We compare our method to a previously published launching scheme that is based on generating the soliton directly within the grating bandgap. When using low-intensity incident pulses, the transmission efficiency of our method is three times higher than that of the previously published scheme.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating

D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen
Opt. Lett. 23(5) 328-330 (1998)

Launching of gap solitons in nonuniform gratings

C. Martijn de Sterke and J. E. Sipe
Opt. Lett. 18(4) 269-271 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved