Abstract

A Fourier domain mode-locked (FDML) laser at 1050nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236kHz over a 63nm tuning range, with 7mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of 10× over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second

Benjamin Potsaid, Iwona Gorczynska, Vivek J. Srinivasan, Yueli Chen, James Jiang, Alex Cable, and James G. Fujimoto
Opt. Express 16(19) 15149-15169 (2008)

Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

Sebastian Marschall, Thomas Klein, Wolfgang Wieser, Benjamin R. Biedermann, Kevin Hsu, Kim P. Hansen, Bernd Sumpf, Karl-Heinz Hasler, Götz Erbert, Ole B. Jensen, Christian Pedersen, Robert Huber, and Peter E. Andersen
Opt. Express 18(15) 15820-15831 (2010)

Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography

R. Huber, M. Wojtkowski, and J. G. Fujimoto
Opt. Express 14(8) 3225-3237 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription