Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of one- and two-dimensional dielectric reflector geometries for high-energy laser pulse compression

Not Accessible

Your library or personal account may give you access

Abstract

We present a high-efficiency reflective lamellar grating geometry, based on a two-dimensional photonic bandgap structure, that we predict will provide significantly improved resistance to laser-induced damage. Two independent numerical methods are used to compare the performance of this geometry with that of a conventional multilayer dielectric stack.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Strategies to increase laser damage performance of Ta2O5/SiO2 mirrors by modifications of the top layer design

Drew Schiltz, Dinesh Patel, Cory Baumgarten, Brendan A. Reagan, Jorge J. Rocca, and Carmen S. Menoni
Appl. Opt. 56(4) C136-C139 (2017)

Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers

Marine Chorel, Thomas Lanternier, Éric Lavastre, Nicolas Bonod, Bruno Bousquet, and Jérôme Néauport
Opt. Express 26(9) 11764-11774 (2018)

Rectangular multilayer dielectric gratings with broadband high diffraction efficiency and enhanced laser damage resistance

Lingyun Xie, Jinlong Zhang, Zhanyi Zhang, Bin Ma, Tongbao Li, Zhanshan Wang, and Xinbin Cheng
Opt. Express 29(2) 2669-2678 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved