Abstract

Two independently tunable femtosecond Ti:sapphire lasers are passively synchronized with a stable relative carrier-envelope offset phase. By heterodyning the spectral overlap of the two frequency combs, we observe multiple regimes for the cavity length difference in which the relative round-trip phase slip is effectively locked to zero. The strong correlation of the femtosecond pulse trains is maintained over minutes without any external stabilization, and relative cavity length variations of 50 nm are compensated. The phase synchronization relies on phase-dependent cross-phase modulation, taking full advantage of the nonresonant optical nonlinearity of the shared gain medium, which is much faster than the optical cycle.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synchronization of Ti:sapphire and Cr:forsterite mode-locked lasers with 100-attosecond precision by optical-phase stabilization

Dai Yoshitomi, Yohei Kobayashi, Masayuki Kakehata, Hideyuki Takada, and Kenji Torizuka
Opt. Express 14(13) 6359-6365 (2006)

Relative carrier-envelope phase dynamics between passively synchronized Ti:sapphire and Cr:forsterite lasers

Zhiyi Wei, Yohei Kobayashi, and Kenji Torizuka
Opt. Lett. 27(23) 2121-2123 (2002)

Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser

Stephane Schilt, Nikola Bucalovic, Vladimir Dolgovskiy, Christian Schori, Max C. Stumpf, Gianni Di Domenico, Selina Pekarek, Andreas E. H. Oehler, Thomas Südmeyer, Ursula Keller, and Pierre Thomann
Opt. Express 19(24) 24171-24181 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription