Abstract

We demonstrate slow light via population oscillation in semiconductor quantum-well structures for the first time. A group velocity as low as 9600 m/s is inferred from the experimentally measured dispersive characteristics. The transparency window exhibits a bandwidth as large as 2 GHz.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slow light using spin coherence and V-type electromagnetically induced transparency in [110] strained quantum wells

Shu-Wei Chang, Shun Lien Chuang, Connie J. Chang-Hasnain, and Hailin Wang
J. Opt. Soc. Am. B 24(4) 849-859 (2007)

Room-temperature slow light with semiconductor quantum-dot devices

Hui Su and Shun Lien Chuang
Opt. Lett. 31(2) 271-273 (2006)

Room temperature slow light in a quantum-well waveguide via coherent population oscillation

Phedon Palinginis, Forrest Sedgwick, Shanna Crankshaw, Michael Moewe, and Connie J. Chang-Hasnain
Opt. Express 13(24) 9909-9915 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription