Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical heterodyne surface-plasmon resonance biosensor

Not Accessible

Your library or personal account may give you access

Abstract

A novel optical heterodyne surface-plasmon resonance (SPR) biosensor with a Zeeman laser is proposed. Two surface plasma waves are excited by two correlated p-polarized waves in a SPR device of the Kretschmann configuration. Two reflected p waves are optically heterodyned such that the magnitude of the heterodyned signal is proportional to the multiplication of two attenuated reflected p waves. Then the detection sensitivity and the dynamic range based on this amplitude-sensitive method are enhanced. In the experiment, the kinetics between mouse immunoglobulin G (IgG) and rabbit antimouse IgG is obtained from sensograms of various concentrations of antimouse IgG. A detection sensitivity of 0.2 nM was achieved. In addition, a concentration of 5 ng/ml of protein G interacting with mouse IgG was measured successfully.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry

Ming-Hung Chiu, Shinn-Fwu Wang, and Rong-Seng Chang
Opt. Lett. 30(3) 233-235 (2005)

Characteristics of a paired surface plasma waves biosensor

Chien Chou, Hsieh-Ting Wu, Yen-Chen Huang, Yi-Ling Chen, and Wen-Chuan Kuo
Opt. Express 14(10) 4307-4315 (2006)

Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration

S. Y. Wu, H. P. Ho, W. C. Law, Chinlon Lin, and S. K. Kong
Opt. Lett. 29(20) 2378-2380 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved