Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Vertical adiabatic transition between a silica planar waveguide and an electro-optic polymer fabricated with gray-scale lithography

Not Accessible

Your library or personal account may give you access

Abstract

We report on a vertical adiabatic transition between silica planar waveguides and electro-optic (EO) polymer. Gray-scale lithography was used to pattern a polymer transition with an exponential profile. Excess losses of the order of 1 dB were measured, and good mode matching to simulation was observed. This configuration, which married the advantages of both silica and EO-polymer planar-optic technologies, demonstrates a new technique for fabricating hybrid active devices with high modulation speed, low insertion loss, and complex geometries.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides

Seh-Won Ahn, William H. Steier, Yin-Hao Kuo, Min-Cheol Oh, Hyung-Jong Lee, Cheng Zhang, and Harold R. Fetterman
Opt. Lett. 27(23) 2109-2111 (2002)

Alignment-free fabrication of a hybrid electro-optic polymer/ion-exchange glass coplanar modulator

Ismail Emre Araci, Roland Himmelhuber, Chris T. DeRose, J. D. Luo, A. K.-Y. Jen, R. A. Norwood, and N. Peyghambarian
Opt. Express 18(20) 21038-21046 (2010)

Fabrication and characterization of three-dimensional silicon tapers

Anita Sure, Thomas Dillon, Janusz Murakowski, Chunchen Lin, David Pustai, and Dennis W. Prather
Opt. Express 11(26) 3555-3561 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.