Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiplexed phase-conjugate holographic data storage with a buffer hologram

Not Accessible

Your library or personal account may give you access

Abstract

We describe and demonstrate a volume holographic storage system in which a phase-conjugate object beam is reconstructed by the same reference beam that was used for recording. An intermediate hologram is used as a temporary buffer, recorded with its own reference beam and the data-bearing object beam. Reading this buffer hologram with the phase conjugate of its reference beam reconstructs the phase conjugate of the object beam, which can then be recorded into the desired volume hologram for long-term storage. This method combines the immunity to lens aberrations provided by phase-conjugate readout with the simplicity of using the same multiplexed reference beam for both recording and readout. Only a single pair of phase-conjugate reference beams is required. Experimental results are shown with a single LiNbO3:Fe crystal used as both buffer and storage holograms and a self-pumped phase-conjugate mirror in BaTiO3 that provides the pair of phase-conjugate reference beams.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Volume holographic data storage at an areal density of 250 gigapixels/in.2

Geoffrey W. Burr, C. Michael Jefferson, Hans Coufal, Mark Jurich, John A. Hoffnagle, Roger M. Macfarlane, and Robert M. Shelby
Opt. Lett. 26(7) 444-446 (2001)

Compact, integrated dynamic holographic memory with refreshed holograms

Jean-Jacques P. Drolet, Ernest Chuang, George Barbastathis, and Demetri Psaltis
Opt. Lett. 22(8) 552-554 (1997)

Pixel-matched holographic data storage with megabit pages

R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox
Opt. Lett. 22(19) 1509-1511 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.