Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides

Not Accessible

Your library or personal account may give you access

Abstract

We report quasi-phase-matched singly resonant optical parametric oscillation in electric-field-poled lithium niobate waveguides. Parametric gains as high as 250%/W, an oscillation threshold of 1.6 W (peak), idler output powers of 220 mW, and a tuning range of 1180–2080 nm for pump wavelengths of 756–772 nm have been observed. Pump depletion is limited to 40% because of the multiple launched transverse modes at the pump wavelength. We predict that fully optimized waveguide singly resonant oscillators can have thresholds of 100 mW, accessible to cw diode pumping.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate

Robert G. Batchko, Dennis R. Weise, Tomas Plettner, Gregory D. Miller, Martin M. Fejer, and Robert L. Byer
Opt. Lett. 23(3) 168-170 (1998)

Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, Håkan Karlsson, Gunnar Arvidsson, and Fredrik Laurell
Opt. Lett. 23(11) 837-839 (1998)

Wide single-mode tuning of a 3.0–3.8-µm, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate

M. van Herpen, S. te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren
Opt. Lett. 27(8) 640-642 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.