Abstract

We discuss the approach to equilibrium and the fluctuations of a bistable system under dynamical conditions such that the field variables can be eliminated adiabatically. The atomic system evolves under the action of the coherent pumping of an external field and of collective and incoherent relaxation processes. The competition between pumping and relaxation effects causes the atomic steady-state configurations to depend discontinuously on the strength of the driving field. We derive an explicit expression for the spectrum of the forward-scattered light, which exhibits hysteresis and a discontinuous dependence on the driving-field amplitude.

© 1978 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum fluctuations in intrinsic bistability of a two-level system

Yacob Ben-Aryeh and Charles M. Bowden
J. Opt. Soc. Am. B 8(5) 1168-1173 (1991)

All-optical switching and flip-flop based on dynamically controlled bistability in a V-type atomic system

Ya-Nan Li, Yu-Yuan Chen, and Ren-Gang Wan
J. Opt. Soc. Am. B 36(7) 1799-1805 (2019)

Optical bistability and dynamics in an optomechanical system with a two-level atom

Cheng Jiang, Xintian Bian, Yuanshun Cui, and Guibin Chen
J. Opt. Soc. Am. B 33(10) 2099-2104 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription