Abstract

A general theory of noise and small-signal modulation of multielement laser diodes in the saturated regime is established. Nonlinear elements are connected to the ports of a linear-optical circuit oscillating in a single electromagnetic mode. The laser amplitude and phase fluctuations are expressed simply in terms of the scattering matrix of the linear-optical circuit at any baseband frequency and for an arbitrary electronic feedback. The case of a single laser diode and a single detector is treated to demonstrate this method. The correlation between optical power and electrical voltage fluctuations is shown to disappear at large output powers, in agreement with recent experiments.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multielement laser-diode linewidth theory

J. Arnaud
Opt. Lett. 13(9) 728-730 (1988)

Theory and Experiments for Multielement Grid Filters in a Dielectric

R. J. Bell, H. V. Romero, and J. M. Blea
Appl. Opt. 9(10) 2350-2358 (1970)

Theory of single-mode laser instabilities

Sami T. Hendow and Murray Sargent
J. Opt. Soc. Am. B 2(1) 84-101 (1985)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription