Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photorefractive energy exchange requiring optical activity and an electric field

Not Accessible

Your library or personal account may give you access

Abstract

Optical-activity-supported energy transfer is explained, and a transfer of 4% is observed in bismuth silicon oxide with same-frequency equal-intensity beams having the same circular polarization. The direction of energy exchange can be controlled by the sign of the electric field or the sense of the circularity. In general, energy exchange occurs by destructive and constructive interference between diffracted and transmitted beams; here with the induced grating vector along the [110] direction, interference cannot occur unless optical activity and an external electric held are present.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-wave mixing gain in Bi12SiO20 with applied alternating electric fields: self-diffraction and optical activity effects

Michael A. Krainak and Frederic M. Davidson
J. Opt. Soc. Am. B 6(4) 634-638 (1989)

Cross-polarization two-beam coupling in optically active photorefractive media

Frederick Vachss and Tallis Y. Chang
J. Opt. Soc. Am. B 6(9) 1683-1692 (1989)

Polarization properties of photorefractive diffraction in electrooptic and optically active sillenite crystals (Bragg regime)

A. Marrakchi, R. V. Johnson, and A. R. Tanguay
J. Opt. Soc. Am. B 3(2) 321-336 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.