Abstract

Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 108 may be possible.

© 1988 Optical Society of America

Full Article  |  PDF Article
More Like This
Composite structures for the enhancement of nonlinear-optical susceptibility

A. E. Neeves and M. H. Birnboim
J. Opt. Soc. Am. B 6(4) 787-796 (1989)

Nonlinear optical susceptibilities of layered composite materials

Robert W. Boyd and J. E. Sipe
J. Opt. Soc. Am. B 11(2) 297-303 (1994)

Decoupling approximation for the nonlinear-optical response of composite media

D. Stroud and Van E. Wood
J. Opt. Soc. Am. B 6(4) 778-786 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics