Abstract

Herein, we have theoretically investigated the sensing performance—including enormous increase in the sensitivity and figure of merit (FOM)—of a magneto-optical surface plasmon resonance (MOSPR) sensor, which is based on the transverse magneto-optical Kerr effect (T-MOKE) in a ferromagnet coupled with a noble-metal grating. Specifically, we propose to use a CoFeB magnetic slab covered by a subwavelength, periodic gold grating configured as a magnetoplasmonic heterostructure. In such a device, sharp, Fano-like T-MOKE signals of high amplitude can be achieved due to the surface plasmon resonances (SPRs) excited in the presence of the gold grating, especially after optimizing the grating period. Tiny changes in the refractive index of an analyte surrounding the MOSPR sensor can be measured by analyzing the shift in the angle of incidence of the resonance positions of the T-MOKE signals. By calculating these resonance positions, we have demonstrated that it is possible to achieve a considerable sensitivity of 105° RIU−1 and a FOM as high as ∼102. Such a MOSPR sensing system can be exploited in biosensors with high detection limits.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Surface plasmon polaritons (SPPs) describe the oscillating charge density wave, which may propagate at the interface of metal and dielectric with dielectric constants of opposite sign [13]. A tiny change in the refractive index of either the metal or the dielectric will cause a significant shift in the SPP wavevector and in the coupling conditions (e.g., the angle of incidence and the wavelength). This provides the foundation for the design of surface plasmon-resonance (SPR) sensors based on detecting the shift of the resonance position of the angle of incidence and the wavelength. Since SPRs were first used for sensing technology in 1983 [4], they have received continuously growing attention from scientific investigators due to their advantages of high sensitivity and label-free, real-time, and rapid detection [519]. Although SPR-based sensors have already been employed and significant progress has been made in the development of instrumentation and in various commercial applications [2028], detection of lower concentrations in solutions, smaller molecules, and diseases, such as acquired immune deficiency syndrome, tropical fevers, and cancers remain challenges for SPR sensors [2931]. Fortunately, SPR sensors can be modified using specific ferromagnetic compositions to construct magneto-optical SPR (MOSPR) sensors, in which the physical-transduction principle is based on the combination of the magneto-optical Kerr effect (MOKE) of a magnetic material and the SPR property of a metallic layer. Such a combination can amplify the magneto-optical response by hundreds of times [1] and can produce a sharp enhancement of the magneto-optical effects, which depend strongly on the dielectric constant of the surrounding medium, thus allowing its use for biosensing applications [29]. Such MOSPR sensors have thus been considered essential for achieving greatly enhanced sensing performance, such as improved sensitivity (S) and a high figure of merit (FOM) [1,29,32]. They have also led to new physics and have the potential for several new applications, such as imaging, surveying, environmental monitoring, and highly sensitive magnetometry [33].

Usually, an efficient MOSPR scheme for plasmon-induced control of the magneto-optical effects employs a magnetoplasmonic crystal that utilizes the SPR excited in hybrid metal-dielectric nanostructures containing noble metals magnetic dielectrics [34,35]. For the T-MOKE signal, magnetization reversal significantly affects the propagation constant of the wavenumber of SPP, leading to a change in the shift and form of the reflection spectrum, which accounts for a Fano-like T-MOKE resonance [36]. In this paper—considering a one-dimensional gold (Au) grating structure on a ferromagnetic CoFeB slab—we have investigated theoretically a MOSPR sensor with high sensing performance. Although similar systems have been extensively studied, the focus is often on enhancing the intensity of the T-MOKE signal [37]. The characteristics of the sensor have seldom been further investigated. Moreover, compared with the magnetic materials (e.g., Co6Ag94 [32], Co [38], and bismuth iron garnet film (BIG) [39]) used in MOSPR structure in recent literature, it has been reported that the ferromagnetic material, CoFeB, exhibits a distinct MOKE effect, large tunneling magneto-resistance ratio, and spin-transfer torque in magnetic tunnel junctions. In addition, preliminary research on its magnetism has established the process for device fabrication. Moreover, this material has been proved to be a constituent of nanomedicines, owing to the presence of conjugated multi-mode nanohybrids with active ingredients of natural herbs, which provides cytotoxicity and inhibitory effects on the proliferation of human hepatocellular carcinomas cells. Considering these factors, we believe that CoFeB demonstrates biological compatibility and will have a wide range of applications in biosensing.

The basic idea is to obtain a sharp, Fano-like T-MOKE signal with high amplitude by exciting an SPR localized mainly in the analyte region by matching the coupling conditions using TM-polarized light. By optimizing the Au grating period, we achieved a remarkable SPR-induced T-MOKE signal with a very narrow Fano-like resonant peak, which can be interrogated by monitoring the angle of incidence. This Fano-like resonance is extremely sensitive to the optical properties of the surrounding medium, and it thus enables the detection of tiny changes in the refractive index of the analyte, providing high sensing performance.

2. Results and discussion

As shown schematically in Fig. 1, the MOSPR system we consider consists of a Au grating layer on top of an 80-nm-thick (TCoFeB= 80 nm) CoFeB slab deposited on a SiO2 substrate. The ridge width (WAu) and depth (TAu) of the grating are fixed at WAu = 100 nm and TAu = 70 nm, respectively. The sum of the ridge width of a Au strip and the slit width (Wslit) between two Au strips is the grating period P. Experimentally, our samples can be fabricated primarily by magnetron sputtering and template-assisted film formation method. A layer of CoFeB film can be first deposited on a clean SiO2 substrate with a certain thickness by magnetron sputtering. Thereafter, a template with an alternate hollow structure is transferred on top of the CoFeB film. Subsequently, Au film is deposited on the sample. Finally, the ultra-thin template is removed from the top of the sample using tape stripping, and an ordered Au grating structure is obtained.

 figure: Fig. 1.

Fig. 1. Schematic of the MOSPR structure. The applied magnetic field vector lies along the z-axis, as indicated by the double-ended blue arrow, perpendicular to the plane of incidence (the xy-plane).

Download Full Size | PPT Slide | PDF

COMSOL Multiphysics with the finite-element method (FEM) was used to calculate the optical and magneto-optical responses using two periodic structures. The infinite length of the grating was simulated with periodic boundary conditions in the x direction and perfectly matched layers along the y direction. The maximum size of the Au grating and CoFeB layer was defined as 1 nm, and the maximum size of the other elements was 3 nm. By scanning different angles, we obtained the relevant optical and magneto-optical curves. The dielectric constant of Au is taken from Johnson and Christy [40], and the refractive index of the SiO2 substrate is 1.46. The external applied magnetic field is assumed to be oriented parallel to the CoFeB layer but perpendicular to the plane of incidence (the xy-plane), so the dielectric permittivity tensor can be written as [41]

$${\varepsilon ^T} = \left( {\begin{array}{{c}} {{\varepsilon_{MO}} }\\ {0\;}\\ 0 \end{array}\;\;\;\;\;\begin{array}{{c}} 0\\ {{\varepsilon_{MO}} }\\ {ig} \end{array}\;\;\;\;\;\begin{array}{{c}} 0\\ { - ig}\\ {{\varepsilon_{MO}} } \end{array}} \right), $$
where ${\varepsilon _{MO}}$ is the dielectric constant of the non-magnetized film, and g takes into account the magneto-optical activity. These values are taken to be ${\varepsilon _{MO}}$=12.226 + 4.301i and $g\; $= (1.215 + 1.788i) × 10−3, which correspond to CoFeB at a working wavelength of $\lambda \; $ = 660 nm, as obtained for a 100-nm-thick CoFeB smooth film on a SiO2 substrate using a magnetic ellipsometer.

In this case, the MOSPR sensing performance is derived from the reflectivity of p-polarized light for reversed magnetization and demagnetization of the CoFeB slab [41]:

$${I_{T - MOKE}}\; \; = \frac{{{R_{ + M}} - {R_{ - M}}}}{{{R_0}}}, $$
where ${R_{ + M}}$ and ${R_{ - M}}$ represent the reflectivities for magnetization perpendicular to the plane of propagation of the incident light and pointing along the (0, 0, 1) and (0, 0, −1) directions, respectively. The quantity ${R_0}$ is the reflection obtained with no magnetic field. Here, we assume the wavelength of the TM-polarized light to be 660 nm, and the T-MOKE signal is measured at oblique angles of incidence from 10° to 70°.

SPPs are bound electromagnetic waves launched from the collective oscillation of the surface-charge density at the interface between a metal and a dielectric [19]. Generally, this two-phase system can be analyzed using Maxwell's equations to obtain the SPP dispersion relationship whose wavevector ${k_{spp}}$ is given by

$${k_{spp}} = \frac{{2\pi }}{{{\lambda _{spp}}}} = {k_0}\sqrt {\frac{{{\varepsilon _m}n ^2}}{{{\varepsilon _m} + n ^2}}} . $$

Here, ${k_0}$ is the wavevector of light in vacuum, ${\varepsilon _m}$ is the dielectric constant of the metal, and n is the refractive index of the analyte that is assumed to be in contact with the surface of the grating. Since the surface plasmon wavevector exceeds that of the incident wave, the wavevector of the incoming light needs to fulfill the phase-matching condition for the diffraction grating [19],

$$rel({{k_{spp}}} )= \left|{{k_0}nsin\theta \; + \; m\frac{{2\pi }}{P}} \right|,$$
where $rel({{k_{spp}}} )$ is the real part of the wavevector, P is the grating period, $\theta $ is the resonance angle of the incident light, and m is an integer corresponding to the evanescent diffraction order that excites the surface wave. As a rule, a magnetic field in T-MOKE configuration can significantly change the real and imaginary parts of the propagation constant of the SPP wavenumber, thereby leading to changes of the minimum position and form of the SPP-associated spectra. The position change is because of the change of the real part of the wavenumber, and the form change is due to variation in the imaginary part of the wavenumber with magnetization reversal, respectively. Therefore, T-MOKE resonance has a Fano-like feature [36].

Based on this foundation, to develop an optimized one-dimensional grating structure for MOSPR-based sensing, we first need to optimize the period P of the metallic grating that excites the SPR in order to obtain a very sharp T-MOKE resonance with a large amplitude.

As shown in Fig. 2 for different values of the period P of the Au grating, the calculated reflectance of a demagnetized sample depends upon the angle of incidence. Here, the refractive index of the analyte is taken to be $n$ = 1.333, which is compatible with an aqueous environment for the analyte [32]. It shows that a minimum value appears in every curve, owing to the excitation of a SPR by the introduction of the Au grating in the MOSPR sensor. Among these curves, the deepest reflectance minimum occurs for P = 318 nm with the negative diffractive order $m$ = −1, and this is where the optimized T-MOKE signal is predicted to be achieved.

 figure: Fig. 2.

Fig. 2. The reflectance of bilayer metallic gratings with different periods from 278 to 358 nm as a function of the angle of incidence. The width and thickness of each Au strip are fixed at 100 and 70 nm, respectively, and the thickness of the CoFeB slab is 80 nm.

Download Full Size | PPT Slide | PDF

To confirm this inference, we calculated the T-MOKE signal as a function of the angle of incidence for various periods P of the Au grating. It is well known that when there is no spontaneous magnetization, the reflectance exhibits a spectrally resonant behavior when the phase-matching condition is satisfied. In the presence of transverse magnetization, however, the off-diagonal elements in the dielectric permittivity tensor of the magnetic material modify the propagation constant, causing a spectral shift of the reflectance curve. Since the magneto-optical constant g is an odd function of the magnetization, a reversal of its direction causes a reversal in the propagation constant. From Eq. (2), this produces a resonant enhancement of the T-MOKE signal as compared to that of a non-resonant system of the same material. The curves in Fig. 3(a) show that the deepest and sharpest Fano-like T-MOKE signal occurs for $\; P$ = 318 nm. Also, as shown in Fig. 3(b), above or below $P$ = 318 nm, there is no further increase in the T-MOKE signal. Moreover, as shown in Fig. 3(c) and (d), based on this structure, investigation of the effect of the thickness of CoFeB and Au layers on the signal of T-MOKE can further affirm that the selected parameters are the most optimized.

 figure: Fig. 3.

Fig. 3. The transverse magneto-optical Kerr signals as a function of the angle of incidence for bilayer metallic gratings with different periods (a) from 278 to 358 nm and (b) in the most sensitive range from 310 to 320 nm (the widths and thicknesses of the Au strips are fixed at 100 and 70 nm, respectively, and the thickness of CoFeB slab is 80 nm). (c) The transverse magneto-optical Kerr signals as a function of the angle of incidence for bilayer metallic gratings with different thickness of CoFeB layer (WAu = 100 nm, TAu = 70 nm, and P = 318 nm) from 20 to 130 nm and with different thickness of Au layer (TCoFeB = 80 nm, WAu = 100 nm, and P = 318 nm) from 10to 130 nm.

Download Full Size | PPT Slide | PDF

To illustrate the physical mechanism unambiguously, the T-MOKE curve and reflectance curve for the $P$ = 318 nm are compared in Fig. 4(a). As one can see, the most in-depth T-MOKE signal occurs at around θ = 24.61° (A feature), where the reflectance almost vanished associated with the excitation of the SPR. Additionally, according to Fig. 4(b) the field profile of |E| for the resonant angle θ = 24.61° shows robust electric field localization in the analyte medium, which further illustrated that the sharp Fano-like T-MOKE signal was induced by the excitation of the SPR. It is noticed that a sharper peak around 33.51° (D feature) attributed to the pure diffraction at this incident angle is confirmed by the field profile of |E| for the resonant angle shown in Fig. 3(c), which results in the almost vanished T-MOKE signal. Therefore, we use $P$ = 318 nm for the Au grating as an optimized structure for the further sensing investigation.

 figure: Fig. 4.

Fig. 4. (a) Extracted angular T-MOKE signals (orange curve) and reflectance (blue curve) as a function of incident angle using $P$ = 318 nm from Fig. 2 and Fig. 3, respectively. Spatial distributions of the electric field intensity |E| for the bilayer gold grating (b) at the dip θ=24.61° and (c) at the peak θ=33.51°.

Download Full Size | PPT Slide | PDF

The T-MOKE modified upon changing the refractive index n of both the incident medium and the gap between the neighboring gratings was investigated to quality the MOSPR sensing performance. As shown in Fig. 5, all the T-MOKE curves exhibit a very sharp Fano-like feature. The angle of incidence at which resonance occurs is sensitive to changes in the reflectance and shows a redshift as the refractive index increases. This is simply due to the change in the resonant condition of the SPR, which depends on the refractive index. Equation (5) below defines the sensitivity in terms of the bulk refractive index, and we used this definition to quantify the sensing performance [32]:

$$S = |{\varDelta \theta /\varDelta {n }} |,$$
where $\varDelta \theta $ is the shift in the angle of incidence of the Fano-like resonance, and $\varDelta n$ is the change in the refractive index of the analyte.

 figure: Fig. 5.

Fig. 5. (a) T-MOKE signal vs. angle of incidence for different values of the refractive index of the analyte. (b) Position of the Fano-like feature as a function of the refractive index of the analyte. The solid circles show the angles of incidence at which the minima of the T-MOKE curves occur as a function of the refractive index of the analyte. The solid line is a linear fit to these data.

Download Full Size | PPT Slide | PDF

As shown in Fig. 5(b), this MOSPR sensor has a significant capability for detecting small changes in the refractive index of the analyte medium. The angles of incidence at which the minima of the T-MOKE curves occur as a function of the refractive index of the analyte correspond to a linear fit with a slope of −105° RIU−1, where RIU stands for refractive index unit, thus producing a sensitivity of S = 105° RIU−1. Here, the refractive index of the analyte, approximately 1.333, is compatible with an aqueous environment involving saccharose, NaCl, and glucose (n = 0.3317 + 0.1515 × C, where C is the concentration) [41] to name a few. Here, we consider glucose solution as an example. With a change of 0.001 in the value of the refractive index, which is equivalent to a change of 0.0066 g/ml in the glucose concentration, the angle for evaluating the angular shift in the minima of the T-MOKE signal will change by 0.1°, which is easily measurable.

In addition to the shift in the resonance angle, for an angular-interrogation MOSPR sensor, the line width of the MOSPR curve must be considered simultaneously in the design. Narrower line width and a larger T-MOKE amplitude are desired because a deeper and narrower resonance allows more efficient detection of the resonance-angle shift [22]. Therefore, a relevant and widely accepted parameter, termed the FOM, has been defined to accurately describe sensing performance of the MOSPR. This parameter, given in Eq. (6), is defined as the sensitivity S divided by the line width $\varGamma $ of the Fano-like feature [32,38]:

$$FoM\; = \; S/\varGamma .$$

To obtain the value of $\varGamma $ accurately, we fitted the T-MOKE curves as functions of the angle of incidence to a Fano line shape of the form given in Eq. (7) [38,42]:

$${I_{T - MOKE}} = \; A + B\ast \frac{{{{\left( {\frac{{r\varGamma }}{2} + \theta - {\theta_0}} \right)}^2}}}{{{{\left( {\frac{\varGamma }{2}} \right)}^2} + {{({\theta - {\theta_0}} )}^2}}}, $$
where $\theta $ is the angle of incidence; A and B are fitted values that represent the background and the overall peak height, respectively; ${\theta _0}$ is the position of the minimum in the T-MOKE curve; and r is the Fano parameter. The values of the parameters for the different curves are listed in Table 1.

Tables Icon

Table 1. Values of the parameters for fitting the T-MOKE curves shown in Fig. 5(a), obtained using equation (7)

The FOM value for this MOSPR system can thus be obtained from the value of $\varGamma $ listed in Table 1 for each curve using Eq. (6). As shown in Fig. 6, this sensing system exhibits high performance, with a FOM of the order of 102 (RIU)−1.

 figure: Fig. 6.

Fig. 6. Figure of merit for the optimized system, as a function of the resonance angle.

Download Full Size | PPT Slide | PDF

3. Conclusions

In this paper, we have shown that a highly sensitive MOSPR sensor, consisting of a CoFeB slab covered by a Au grating, can be designed for analyte detection. The detection principle is based on the existence of sharp, Fano-like T-MOKE curves, which can be attributed to the excitation of a SPR by a Au grating. We investigated the influence of the grating period on the performance of the sensor using the FEM method. We showed that a MOSPR structure could provide considerable sensitivity—up to 105° RIU−1—and a significant enhancement of the FOM. Thus, this type of device may soon pave the way for the production of highly sensitive sensors and biosensors.

Funding

Zhongshan Science and Technology Planning Project of Guangdong Province (2019A4008).

Acknowledgments

The authors would like to thank Qingya Li (a scientific compass employee) from Shiyanjia Lab (www.shiyanjia.com) for the paper revision, and Chengxin Lei in Shandong University of Technology for the analysis of the data.

Disclosures

There are no conflicts to declare.

References

1. C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019). [CrossRef]  

2. C. Rizal, B. Niraula, and H. Lee, “Bio-Magnetoplasmonics, Emerging Biomedical Technologies and Beyond,” JNMR 3(3), 00059–00065 (2016). [CrossRef]  

3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef]  

4. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982). [CrossRef]  

5. G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019). [CrossRef]  

6. A. Garifullina, N. Bhalla, and A. Q. Shen, “Probing specific gravity in real-time with graphene oxide plasmonics,” Anal. Methods 10(3), 290–297 (2018). [CrossRef]  

7. A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018). [CrossRef]  

8. J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019). [CrossRef]  

9. Z. Sadeghi and H. Shirkani, “High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating,” Plasmonics 14(5), 1179–1188 (2019). [CrossRef]  

10. R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018). [CrossRef]  

11. H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019). [CrossRef]  

12. M. Lutfiyah, W. Aji Eko Prabowo, and A. Melati, “A Computational Theory Study of Surface Plasmon Resonance (SPR) Porcine Gelatine Detected Sensor based-on Fe3O4 Nanoparticle—CNT with ATR Method in Kretschmann Configuration,” J. Phys.: Conf. Ser. 1445, 012005 (2020). [CrossRef]  

13. H. Song, Q. Wang, and W. M. Zhao, “A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber,” Opt. Lasers Eng. 132, 106135 (2020). [CrossRef]  

14. W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020). [CrossRef]  

15. X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019). [CrossRef]  

16. Y. Bdour, C. Escobedo, and R. G. Sabat, “Wavelength-selective plasmonic sensor based on chirped-pitch crossed surface relief gratings,” Opt. Express 27(6), 8429–8439 (2019). [CrossRef]  

17. Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express 26(2), 1910–1917 (2018). [CrossRef]  

18. X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020). [CrossRef]  

19. K. Lin, Y. Lu, J. Chen, R. Zheng, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008). [CrossRef]  

20. K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231–4233 (2004). [CrossRef]  

21. Y.-C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005). [CrossRef]  

22. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006). [CrossRef]  

23. K. Ahmed, M. A. Jabin, and B. K. Paul, “Surface plasmon resonance-based gold-coated biosensor for the detection of fuel adulteration,” J. Comp. Electron. 19(1), 321–332 (2020). [CrossRef]  

24. A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020). [CrossRef]  

25. B. Kaur and A. Sharma, “SPR-based fiber optic sensor in NIR region,” SPIE, (2019).

26. L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021). [CrossRef]  

27. H. N. Rafi, M. R. Kaysir, and M. J. Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” Sens. Bio Sens. Res. 29, 100364 (2020). [CrossRef]  

28. Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020). [CrossRef]  

29. B. Sepulveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006). [CrossRef]  

30. D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008). [CrossRef]  

31. J. Breault-Turcot and J. F. Masson, “Nanostructured substrates for portable and miniature SPR biosensors,” Anal Bioanal Chem 403(6), 1477–1484 (2012). [CrossRef]  

32. B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017). [CrossRef]  

33. G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018). [CrossRef]  

34. M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013). [CrossRef]  

35. A. Y. Frolov, M. R. Shcherbakov, and A. A. Fedyanin, “Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals,” Phys. Rev. B 101(4), 045409 (2020). [CrossRef]  

36. A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, “Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles,” Opt. Express 27(23), 33170–33179 (2019). [CrossRef]  

37. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009). [CrossRef]  

38. B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016). [CrossRef]  

39. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011). [CrossRef]  

40. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

41. Z. Ayareh, S. Mahmoodi, and M. Moradi, “Magneto-plasmonic biosensing platform for detection of glucose concentration,” Optik 178, 765–773 (2019). [CrossRef]  

42. A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011). [CrossRef]  

References

  • View by:

  1. C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
    [Crossref]
  2. C. Rizal, B. Niraula, and H. Lee, “Bio-Magnetoplasmonics, Emerging Biomedical Technologies and Beyond,” JNMR 3(3), 00059–00065 (2016).
    [Crossref]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  4. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [Crossref]
  5. G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
    [Crossref]
  6. A. Garifullina, N. Bhalla, and A. Q. Shen, “Probing specific gravity in real-time with graphene oxide plasmonics,” Anal. Methods 10(3), 290–297 (2018).
    [Crossref]
  7. A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
    [Crossref]
  8. J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
    [Crossref]
  9. Z. Sadeghi and H. Shirkani, “High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating,” Plasmonics 14(5), 1179–1188 (2019).
    [Crossref]
  10. R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
    [Crossref]
  11. H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
    [Crossref]
  12. M. Lutfiyah, W. Aji Eko Prabowo, and A. Melati, “A Computational Theory Study of Surface Plasmon Resonance (SPR) Porcine Gelatine Detected Sensor based-on Fe3O4 Nanoparticle—CNT with ATR Method in Kretschmann Configuration,” J. Phys.: Conf. Ser. 1445, 012005 (2020).
    [Crossref]
  13. H. Song, Q. Wang, and W. M. Zhao, “A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber,” Opt. Lasers Eng. 132, 106135 (2020).
    [Crossref]
  14. W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
    [Crossref]
  15. X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019).
    [Crossref]
  16. Y. Bdour, C. Escobedo, and R. G. Sabat, “Wavelength-selective plasmonic sensor based on chirped-pitch crossed surface relief gratings,” Opt. Express 27(6), 8429–8439 (2019).
    [Crossref]
  17. Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express 26(2), 1910–1917 (2018).
    [Crossref]
  18. X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
    [Crossref]
  19. K. Lin, Y. Lu, J. Chen, R. Zheng, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
    [Crossref]
  20. K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231–4233 (2004).
    [Crossref]
  21. Y.-C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005).
    [Crossref]
  22. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
    [Crossref]
  23. K. Ahmed, M. A. Jabin, and B. K. Paul, “Surface plasmon resonance-based gold-coated biosensor for the detection of fuel adulteration,” J. Comp. Electron. 19(1), 321–332 (2020).
    [Crossref]
  24. A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
    [Crossref]
  25. B. Kaur and A. Sharma, “SPR-based fiber optic sensor in NIR region,” SPIE, (2019).
  26. L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
    [Crossref]
  27. H. N. Rafi, M. R. Kaysir, and M. J. Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” Sens. Bio Sens. Res. 29, 100364 (2020).
    [Crossref]
  28. Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
    [Crossref]
  29. B. Sepulveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
    [Crossref]
  30. D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008).
    [Crossref]
  31. J. Breault-Turcot and J. F. Masson, “Nanostructured substrates for portable and miniature SPR biosensors,” Anal Bioanal Chem 403(6), 1477–1484 (2012).
    [Crossref]
  32. B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
    [Crossref]
  33. G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
    [Crossref]
  34. M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
    [Crossref]
  35. A. Y. Frolov, M. R. Shcherbakov, and A. A. Fedyanin, “Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals,” Phys. Rev. B 101(4), 045409 (2020).
    [Crossref]
  36. A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, “Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles,” Opt. Express 27(23), 33170–33179 (2019).
    [Crossref]
  37. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
    [Crossref]
  38. B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
    [Crossref]
  39. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
    [Crossref]
  40. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  41. Z. Ayareh, S. Mahmoodi, and M. Moradi, “Magneto-plasmonic biosensing platform for detection of glucose concentration,” Optik 178, 765–773 (2019).
    [Crossref]
  42. A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
    [Crossref]

2021 (1)

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

2020 (9)

H. N. Rafi, M. R. Kaysir, and M. J. Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” Sens. Bio Sens. Res. 29, 100364 (2020).
[Crossref]

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

K. Ahmed, M. A. Jabin, and B. K. Paul, “Surface plasmon resonance-based gold-coated biosensor for the detection of fuel adulteration,” J. Comp. Electron. 19(1), 321–332 (2020).
[Crossref]

A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
[Crossref]

A. Y. Frolov, M. R. Shcherbakov, and A. A. Fedyanin, “Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals,” Phys. Rev. B 101(4), 045409 (2020).
[Crossref]

M. Lutfiyah, W. Aji Eko Prabowo, and A. Melati, “A Computational Theory Study of Surface Plasmon Resonance (SPR) Porcine Gelatine Detected Sensor based-on Fe3O4 Nanoparticle—CNT with ATR Method in Kretschmann Configuration,” J. Phys.: Conf. Ser. 1445, 012005 (2020).
[Crossref]

H. Song, Q. Wang, and W. M. Zhao, “A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber,” Opt. Lasers Eng. 132, 106135 (2020).
[Crossref]

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

2019 (9)

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019).
[Crossref]

Y. Bdour, C. Escobedo, and R. G. Sabat, “Wavelength-selective plasmonic sensor based on chirped-pitch crossed surface relief gratings,” Opt. Express 27(6), 8429–8439 (2019).
[Crossref]

C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
[Crossref]

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Z. Sadeghi and H. Shirkani, “High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating,” Plasmonics 14(5), 1179–1188 (2019).
[Crossref]

A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, “Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles,” Opt. Express 27(23), 33170–33179 (2019).
[Crossref]

Z. Ayareh, S. Mahmoodi, and M. Moradi, “Magneto-plasmonic biosensing platform for detection of glucose concentration,” Optik 178, 765–773 (2019).
[Crossref]

2018 (5)

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
[Crossref]

A. Garifullina, N. Bhalla, and A. Q. Shen, “Probing specific gravity in real-time with graphene oxide plasmonics,” Anal. Methods 10(3), 290–297 (2018).
[Crossref]

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express 26(2), 1910–1917 (2018).
[Crossref]

2017 (1)

B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
[Crossref]

2016 (2)

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

C. Rizal, B. Niraula, and H. Lee, “Bio-Magnetoplasmonics, Emerging Biomedical Technologies and Beyond,” JNMR 3(3), 00059–00065 (2016).
[Crossref]

2013 (1)

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

2012 (1)

J. Breault-Turcot and J. F. Masson, “Nanostructured substrates for portable and miniature SPR biosensors,” Anal Bioanal Chem 403(6), 1477–1484 (2012).
[Crossref]

2011 (2)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

2009 (1)

2008 (2)

D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008).
[Crossref]

K. Lin, Y. Lu, J. Chen, R. Zheng, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
[Crossref]

2006 (2)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref]

B. Sepulveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006).
[Crossref]

2005 (1)

2004 (1)

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231–4233 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ahmed, K.

K. Ahmed, M. A. Jabin, and B. K. Paul, “Surface plasmon resonance-based gold-coated biosensor for the detection of fuel adulteration,” J. Comp. Electron. 19(1), 321–332 (2020).
[Crossref]

Aji Eko Prabowo, W.

M. Lutfiyah, W. Aji Eko Prabowo, and A. Melati, “A Computational Theory Study of Surface Plasmon Resonance (SPR) Porcine Gelatine Detected Sensor based-on Fe3O4 Nanoparticle—CNT with ATR Method in Kretschmann Configuration,” J. Phys.: Conf. Ser. 1445, 012005 (2020).
[Crossref]

Akimov, I. A.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Albella, P.

B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
[Crossref]

Altug, H.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

An, S.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Armelles, G.

Artar, A.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Ayareh, Z.

Z. Ayareh, S. Mahmoodi, and M. Moradi, “Magneto-plasmonic biosensing platform for detection of glucose concentration,” Optik 178, 765–773 (2019).
[Crossref]

Bai, J.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

Banerji, S.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Bdour, Y.

Belotelov, V.

C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
[Crossref]

Belotelov, V. I.

A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, “Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles,” Opt. Express 27(23), 33170–33179 (2019).
[Crossref]

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
[Crossref]

Berzhansky, V. N.

A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, “Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles,” Opt. Express 27(23), 33170–33179 (2019).
[Crossref]

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Bhalla, N.

A. Garifullina, N. Bhalla, and A. Q. Shen, “Probing specific gravity in real-time with graphene oxide plasmonics,” Anal. Methods 10(3), 290–297 (2018).
[Crossref]

Booksh, K. S.

Borile, G.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Breault-Turcot, J.

J. Breault-Turcot and J. F. Masson, “Nanostructured substrates for portable and miniature SPR biosensors,” Anal Bioanal Chem 403(6), 1477–1484 (2012).
[Crossref]

Bruce Zhi, G.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Bykov, D. A.

Caballero, B.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Calle, A.

Capaldo, P.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Cetin, A.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Changlin, W.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Chen, J.

Chen, Y.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Chen, Z.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Cheng, T.

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, P. K.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Connor, J.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Cuevas, J. C.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Dagesyan, S. A.

A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, “Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles,” Opt. Express 27(23), 33170–33179 (2019).
[Crossref]

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Dayong, G.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Diaz-Valencia, B. F.

B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
[Crossref]

Dong, J.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Doskolovich, L. L.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Enrico, G.

R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
[Crossref]

Escobedo, C.

Fedyanin, A. A.

A. Y. Frolov, M. R. Shcherbakov, and A. A. Fedyanin, “Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals,” Phys. Rev. B 101(4), 045409 (2020).
[Crossref]

Feng, X.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Filippi, A.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Filippo, R.

R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
[Crossref]

Frolov, A. Y.

A. Y. Frolov, M. R. Shcherbakov, and A. A. Fedyanin, “Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals,” Phys. Rev. B 101(4), 045409 (2020).
[Crossref]

Gao, Z.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

García-Martín, A.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Garifullina, A.

A. Garifullina, N. Bhalla, and A. Q. Shen, “Probing specific gravity in real-time with graphene oxide plasmonics,” Anal. Methods 10(3), 290–297 (2018).
[Crossref]

Gazzola, E.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Giulia, B.

R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
[Crossref]

Gopal, A. V.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Guan, H.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Gupta, A.

A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
[Crossref]

Gusev, N. A.

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Han, D.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

Handa, Y.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231–4233 (2004).
[Crossref]

He, M.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Hooper, I. R.

D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008).
[Crossref]

Hu, S.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Huang, M.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Huang, Q.

Ibtisam, T.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Ignatyeva, D.

C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
[Crossref]

Ignatyeva, D. O.

Islam, M. J.

H. N. Rafi, M. R. Kaysir, and M. J. Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” Sens. Bio Sens. Res. 29, 100364 (2020).
[Crossref]

Jabin, M. A.

K. Ahmed, M. A. Jabin, and B. K. Paul, “Surface plasmon resonance-based gold-coated biosensor for the detection of fuel adulteration,” J. Comp. Electron. 19(1), 321–332 (2020).
[Crossref]

Jeff, T.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Jiang, Z.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Jie, Z.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jon, A.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Jung, D.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Kajikawa, K.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231–4233 (2004).
[Crossref]

Kalish, A. N.

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
[Crossref]

Kapralov, P. O.

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Kaur, B.

B. Kaur and A. Sharma, “SPR-based fiber optic sensor in NIR region,” SPIE, (2019).

Kaysir, M. R.

H. N. Rafi, M. R. Kaysir, and M. J. Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” Sens. Bio Sens. Res. 29, 100364 (2020).
[Crossref]

Khanikaev, A.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Khokhlov, N. E.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

Khramova, A. E.

Kim, G. B.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Kim, Y. M.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Kim, Y. P.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Kim, Y.-C.

Knyazev, G. A.

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Kozhaev, M. A.

Kreilkamp, L. E.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

Lechuga, L. M.

Lee, H.

C. Rizal, B. Niraula, and H. Lee, “Bio-Magnetoplasmonics, Emerging Biomedical Technologies and Beyond,” JNMR 3(3), 00059–00065 (2016).
[Crossref]

Lee, T. G.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Lewis, E.

Li, S.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

Li, X.

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Lin, K.

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Linda, T.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Lippitz, A.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Liu, C.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Liu, Q.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Liu, W.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Lu, H.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Lu, Y.

Luo, Y.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Lutfiyah, M.

M. Lutfiyah, W. Aji Eko Prabowo, and A. Melati, “A Computational Theory Study of Surface Plasmon Resonance (SPR) Porcine Gelatine Detected Sensor based-on Fe3O4 Nanoparticle—CNT with ATR Method in Kretschmann Configuration,” J. Phys.: Conf. Ser. 1445, 012005 (2020).
[Crossref]

Lv, J.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Mahmoodi, S.

Z. Ayareh, S. Mahmoodi, and M. Moradi, “Magneto-plasmonic biosensing platform for detection of glucose concentration,” Optik 178, 765–773 (2019).
[Crossref]

Masson, J. F.

J. Breault-Turcot and J. F. Masson, “Nanostructured substrates for portable and miniature SPR biosensors,” Anal Bioanal Chem 403(6), 1477–1484 (2012).
[Crossref]

Matelon, R. J.

D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008).
[Crossref]

Mejía-Salazar, J. R.

B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
[Crossref]

Melati, A.

M. Lutfiyah, W. Aji Eko Prabowo, and A. Melati, “A Computational Theory Study of Surface Plasmon Resonance (SPR) Porcine Gelatine Detected Sensor based-on Fe3O4 Nanoparticle—CNT with ATR Method in Kretschmann Configuration,” J. Phys.: Conf. Ser. 1445, 012005 (2020).
[Crossref]

Mike, P.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Ming, H.

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref]

Mitsui, K.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231–4233 (2004).
[Crossref]

Monika, P.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Moradi, M.

Z. Ayareh, S. Mahmoodi, and M. Moradi, “Magneto-plasmonic biosensing platform for detection of glucose concentration,” Optik 178, 765–773 (2019).
[Crossref]

Mousavi, S.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Newman, D. M.

D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008).
[Crossref]

Ning, B.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

Niraula, B.

C. Rizal, B. Niraula, and H. Lee, “Bio-Magnetoplasmonics, Emerging Biomedical Technologies and Beyond,” JNMR 3(3), 00059–00065 (2016).
[Crossref]

Nur-E-Alam, M.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Oliveira, O. N.

B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
[Crossref]

Park, J.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Paul, B. K.

K. Ahmed, M. A. Jabin, and B. K. Paul, “Surface plasmon resonance-based gold-coated biosensor for the detection of fuel adulteration,” J. Comp. Electron. 19(1), 321–332 (2020).
[Crossref]

Peng, W.

Peng, Y.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

Pietro, C.

R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
[Crossref]

Pigazzi, M.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Pisana, S.

C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
[Crossref]

Pohl, M.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Porras-Montenegro, N.

B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
[Crossref]

Prokopov, A. R.

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Qiu, W.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Qu, L.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

Rafi, H. N.

H. N. Rafi, M. R. Kaysir, and M. J. Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” Sens. Bio Sens. Res. 29, 100364 (2020).
[Crossref]

Rizal, C.

C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
[Crossref]

C. Rizal, B. Niraula, and H. Lee, “Bio-Magnetoplasmonics, Emerging Biomedical Technologies and Beyond,” JNMR 3(3), 00059–00065 (2016).
[Crossref]

Roberta, D. A.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Romanato, F.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Rossi, S.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Sabat, R. G.

Sadeghi, Z.

Z. Sadeghi and H. Shirkani, “High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating,” Plasmonics 14(5), 1179–1188 (2019).
[Crossref]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref]

Sepulveda, B.

Shaposhnikov, A. N.

A. E. Khramova, D. O. Ignatyeva, M. A. Kozhaev, S. A. Dagesyan, V. N. Berzhansky, A. N. Shaposhnikov, S. V. Tomilin, and V. I. Belotelov, “Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles,” Opt. Express 27(23), 33170–33179 (2019).
[Crossref]

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Sharma, A.

B. Kaur and A. Sharma, “SPR-based fiber optic sensor in NIR region,” SPIE, (2019).

Shcherbakov, M. R.

A. Y. Frolov, M. R. Shcherbakov, and A. A. Fedyanin, “Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals,” Phys. Rev. B 101(4), 045409 (2020).
[Crossref]

Shen, A. Q.

A. Garifullina, N. Bhalla, and A. Q. Shen, “Probing specific gravity in real-time with graphene oxide plasmonics,” Anal. Methods 10(3), 290–297 (2018).
[Crossref]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref]

Shi, Y.

X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019).
[Crossref]

Shirkani, H.

Z. Sadeghi and H. Shirkani, “High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating,” Plasmonics 14(5), 1179–1188 (2019).
[Crossref]

Shvets, G.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Singh, A.

A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
[Crossref]

Singh, H.

A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
[Crossref]

Singh, R. K.

A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
[Crossref]

Song, H.

H. Song, Q. Wang, and W. M. Zhao, “A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber,” Opt. Lasers Eng. 132, 106135 (2020).
[Crossref]

Stefano, R.

R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
[Crossref]

Su, W.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Sun, T.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Thomas, R.

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Tiwari, A.

A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
[Crossref]

Tomilin, S. V.

Tregnago, C.

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Unger, W. E. S.

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref]

Vasiliev, M.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Vetoshko, P. M.

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

Wang, F.

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Wang, Q.

H. Song, Q. Wang, and W. M. Zhao, “A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber,” Opt. Lasers Eng. 132, 106135 (2020).
[Crossref]

Wang, Y.

Wears, M. L.

D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008).
[Crossref]

Xiong, X.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Xueliang, W.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Yallapragada, V. J.

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

Yan, X.

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

Yang, L.

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Yang, M.

Yanik, A.

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Yonghong, S.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Youjun, Z.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Yu, J.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Zhang, H.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Zhang, J.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Zhang, X.

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019).
[Crossref]

Zhao, W. M.

H. Song, Q. Wang, and W. M. Zhao, “A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber,” Opt. Lasers Eng. 132, 106135 (2020).
[Crossref]

Zhao, X.

X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019).
[Crossref]

Zheng, R.

Zhiwen, C.

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Zhong, Y.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Zhou, H.

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

Zhou, X.

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

Zhu, W.

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express 26(2), 1910–1917 (2018).
[Crossref]

Zhu, X.

X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019).
[Crossref]

Zvezdin, A. K.

C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
[Crossref]

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009).
[Crossref]

ACS Omega (1)

B. F. Diaz-Valencia, J. R. Mejía-Salazar, O. N. Oliveira, N. Porras-Montenegro, and P. Albella, “Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms,” ACS Omega 2(11), 7682–7685 (2017).
[Crossref]

ACS Photonics (2)

G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic Crystals for Highly Sensitive Magnetometry,” ACS Photonics 5(12), 4951–4959 (2018).
[Crossref]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Anal Bioanal Chem (1)

J. Breault-Turcot and J. F. Masson, “Nanostructured substrates for portable and miniature SPR biosensors,” Anal Bioanal Chem 403(6), 1477–1484 (2012).
[Crossref]

Anal. Methods (1)

A. Garifullina, N. Bhalla, and A. Q. Shen, “Probing specific gravity in real-time with graphene oxide plasmonics,” Anal. Methods 10(3), 290–297 (2018).
[Crossref]

Appl. Phys. Lett. (1)

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231–4233 (2004).
[Crossref]

Biophys. Chem. (1)

G. Borile, S. Rossi, A. Filippi, E. Gazzola, P. Capaldo, C. Tregnago, M. Pigazzi, and F. Romanato, “Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance,” Biophys. Chem. 254, 106262 (2019).
[Crossref]

Biosensors (1)

A. Jon, D. A. Roberta, P. Monika, T. Jeff, P. Mike, T. Linda, R. Thomas, and T. Ibtisam, “Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection,” Biosensors 8(2), 32 (2018).
[Crossref]

Condens. Matter (1)

C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface Plasmon Resonance (SPR) to Magneto-Optic SPR,” Condens. Matter 4(2), 50 (2019).
[Crossref]

Food Anal. Methods (1)

L. Qu, J. Bai, Y. Peng, D. Han, B. Ning, H. Zhou, S. Li, and Z. Gao, “Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene,” Food Anal. Methods 14(1), 54–65 (2021).
[Crossref]

IEEE J. Select. Topics Quantum Electron. (1)

H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, Y. Zhong, J. Zhang, M. He, Y. Luo, and Z. Chen, “Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications,” IEEE J. Select. Topics Quantum Electron. 25(2), 1–9 (2019).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

X. Zhou, S. Li, X. Li, X. Yan, X. Zhang, F. Wang, and T. Cheng, “High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber,” IEEE Trans. Instrum. Meas. 69(10), 8494–8499 (2020).
[Crossref]

J. Comp. Electron. (1)

K. Ahmed, M. A. Jabin, and B. K. Paul, “Surface plasmon resonance-based gold-coated biosensor for the detection of fuel adulteration,” J. Comp. Electron. 19(1), 321–332 (2020).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys.: Condens. Matter 20(34), 345230 (2008).
[Crossref]

J. Phys.: Conf. Ser. (1)

M. Lutfiyah, W. Aji Eko Prabowo, and A. Melati, “A Computational Theory Study of Surface Plasmon Resonance (SPR) Porcine Gelatine Detected Sensor based-on Fe3O4 Nanoparticle—CNT with ATR Method in Kretschmann Configuration,” J. Phys.: Conf. Ser. 1445, 012005 (2020).
[Crossref]

JNMR (1)

C. Rizal, B. Niraula, and H. Lee, “Bio-Magnetoplasmonics, Emerging Biomedical Technologies and Beyond,” JNMR 3(3), 00059–00065 (2016).
[Crossref]

Nano Lett. (1)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref]

Nat. Nanotechnol. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

New J. Phys. (1)

M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, and M. Vasiliev, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15(7), 075024 (2013).
[Crossref]

Opt Express (1)

X. Zhao, X. Zhang, X. Zhu, and Y. Shi, “Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure,” Opt Express 27(7), 9550–9560 (2019).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

H. Song, Q. Wang, and W. M. Zhao, “A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber,” Opt. Lasers Eng. 132, 106135 (2020).
[Crossref]

Opt. Lett. (2)

Optik (1)

Z. Ayareh, S. Mahmoodi, and M. Moradi, “Magneto-plasmonic biosensing platform for detection of glucose concentration,” Optik 178, 765–773 (2019).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Y. Frolov, M. R. Shcherbakov, and A. A. Fedyanin, “Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals,” Phys. Rev. B 101(4), 045409 (2020).
[Crossref]

Plasmonics (2)

A. Gupta, H. Singh, A. Singh, R. K. Singh, and A. Tiwari, “D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers,” Plasmonics 15(5), 1323–1330 (2020).
[Crossref]

Z. Sadeghi and H. Shirkani, “High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating,” Plasmonics 14(5), 1179–1188 (2019).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

A. Yanik, A. Cetin, M. Huang, A. Artar, S. Mousavi, A. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U. S. A. 108(29), 11784–11789 (2011).
[Crossref]

Results Opt. (1)

W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, and P. K. Chu, “A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding,” Results Opt. 1, 100004 (2020).
[Crossref]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Sens. Actuators B (1)

Z. Jie, Z. Youjun, W. Xueliang, W. Changlin, C. Zhiwen, G. Bruce Zhi, G. Dayong, and S. Yonghong, “The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology,” Sens. Actuators B 304, 127391 (2020).
[Crossref]

Sens. Actuators, B (1)

J. Park, G. B. Kim, A. Lippitz, Y. M. Kim, D. Jung, W. E. S. Unger, Y. P. Kim, and T. G. Lee, “Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media,” Sens. Actuators, B 281, 527–534 (2019).
[Crossref]

Sens. Bio Sens. Res. (1)

H. N. Rafi, M. R. Kaysir, and M. J. Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” Sens. Bio Sens. Res. 29, 100364 (2020).
[Crossref]

Sensors (1)

R. Stefano, G. Enrico, C. Pietro, B. Giulia, and R. Filippo, “Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber,” Sensors 18(5), 1621 (2018).
[Crossref]

Other (1)

B. Kaur and A. Sharma, “SPR-based fiber optic sensor in NIR region,” SPIE, (2019).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the MOSPR structure. The applied magnetic field vector lies along the z-axis, as indicated by the double-ended blue arrow, perpendicular to the plane of incidence (the xy-plane).
Fig. 2.
Fig. 2. The reflectance of bilayer metallic gratings with different periods from 278 to 358 nm as a function of the angle of incidence. The width and thickness of each Au strip are fixed at 100 and 70 nm, respectively, and the thickness of the CoFeB slab is 80 nm.
Fig. 3.
Fig. 3. The transverse magneto-optical Kerr signals as a function of the angle of incidence for bilayer metallic gratings with different periods (a) from 278 to 358 nm and (b) in the most sensitive range from 310 to 320 nm (the widths and thicknesses of the Au strips are fixed at 100 and 70 nm, respectively, and the thickness of CoFeB slab is 80 nm). (c) The transverse magneto-optical Kerr signals as a function of the angle of incidence for bilayer metallic gratings with different thickness of CoFeB layer (WAu = 100 nm, TAu = 70 nm, and P = 318 nm) from 20 to 130 nm and with different thickness of Au layer (TCoFeB = 80 nm, WAu = 100 nm, and P = 318 nm) from 10to 130 nm.
Fig. 4.
Fig. 4. (a) Extracted angular T-MOKE signals (orange curve) and reflectance (blue curve) as a function of incident angle using $P$ = 318 nm from Fig. 2 and Fig. 3, respectively. Spatial distributions of the electric field intensity |E| for the bilayer gold grating (b) at the dip θ=24.61° and (c) at the peak θ=33.51°.
Fig. 5.
Fig. 5. (a) T-MOKE signal vs. angle of incidence for different values of the refractive index of the analyte. (b) Position of the Fano-like feature as a function of the refractive index of the analyte. The solid circles show the angles of incidence at which the minima of the T-MOKE curves occur as a function of the refractive index of the analyte. The solid line is a linear fit to these data.
Fig. 6.
Fig. 6. Figure of merit for the optimized system, as a function of the resonance angle.

Tables (1)

Tables Icon

Table 1. Values of the parameters for fitting the T-MOKE curves shown in Fig. 5(a), obtained using equation (7)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε T = ( ε M O 0 0 0 ε M O i g 0 i g ε M O ) ,
I T M O K E = R + M R M R 0 ,
k s p p = 2 π λ s p p = k 0 ε m n 2 ε m + n 2 .
r e l ( k s p p ) = | k 0 n s i n θ + m 2 π P | ,
S = | Δ θ / Δ n | ,
F o M = S / Γ .
I T M O K E = A + B ( r Γ 2 + θ θ 0 ) 2 ( Γ 2 ) 2 + ( θ θ 0 ) 2 ,

Metrics