Abstract

We theoretically study the electromagnetic field controlled photon correlation and radiation properties in a two-atom-cavity quantum electrodynamic (QED) system with different atom-cavity coupling strengths. When two three-level atoms are coherently driven by a probe field and a strong control field, forming a ladder type electromagnetically induced transparency configuration, there exist four different excitation pathways via the two photon processes, yielding four different frequencies for realizing two photon blockades. Carefully choosing the intensity of the control field, resonant single-photon and two-photon excitation can be achieved at the same probe field frequency. Thus, two photon blockade phenomenon can be significantly improved and the collective radiation behavior becomes superradiance or even hyperradiance. Our system presented here can be considered to be a converter of a weak coherent light to two correlated photons.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nonclassical light plays a major role in many quantum information technologies. The ability to generate high quality nonclassical light efficiently is essential for advances in optical quantum technologies [1]. The photon number state (i.e., the Fock state) is a fundamental nonclassical light. In particular, for a single photon state, the second-order correlation function $g^{(2)}(0)\rightarrow 0$ implies that two coincident photons cannot be detected [2,3], which is well known as the photon antibunching [4,5]. In past few decades, various approaches have been proposed to generate antibunched photons, such as spontaneous parametric down conversion [6,7] and quantum emitter in the cavity [8,9].

Single photon blockade (PB), as a method for realizing photon antibunching and characterized by vanishing the second order correlation function of cavity photons, has been intensively studied. To date, there are two well-known methods to obtain strong PB effects. One is called as the conventional photon blockade (CPB), and the other is recognized as the unconventional photon blockade (UCPB). The former rely on the energy anharmonicity in cavity QED systems [10], but the later is based on the destructive quantum interference between two different quantum excitation pathways from the ground state to a doubly excited state [1114]. Both methods have been studied theoretically and experimentally in various quantum systems [5,1522].

Recently, the concept of photon blockade has been extended to multiphoton excitation [2326]. For two photon blockade, two photons leak from the cavity simultaneously, resulting in the steady-state third-order correlation function $g^{(3)}(0)<1$, but the second-order correlation function $g^{(2)}(0)>1$. This phenomenon has been observed in a single atom cavity QED system [27]. Although many advanced techniques have been used to improve the quality of the single photon blockade, including the quantum interference [28], dipole-dipole interaction [29] and Rydberg interaction [30,31], the research of two photon blockade is still on its early stage. How to realize strong two photon blockade is challenging both in the theory and experiment.

In this paper, we study the photon correlation and radiation properties in a two atoms cavity QED system under the two photon blockade regime. Here, two identical three-level ladder-type atoms are embedded in a single mode cavity with different atom-cavity coupling strengths, and coherently driven by a weak probe field and a strong control field, forming a typical Ladder type electromagnetically induced transparency (EIT) configuration [32]. Although the EIT technique has been used to manipulate the photon blockades [33] many other interesting features have not yet been studied. Using this technique, we show that the control field will induce two additional excitation pathways via the two photon processes. Therefore, there exist four frequencies to implement the two photon blockade. By carefully choosing the control field intensity, one can obtain a specific probe field frequency at which both states in one-photon and two-photon spaces can be resonantly excited. As a result, the two photon blockade can be significantly improved with an enhanced mean photon number. We show that the steady-state third-order correlation function $g^{(3)}(0)$ can be reduced to $10^{-4}$, while the second-order correlation function is larger than unity. Moreover, the collective radiation property of two atoms becomes superradiance or hyperradiance with a strong two photon blockade.

2. Model

The schematic diagram of the system considered here is shown in Fig. 1(a). Two identical three-level ladder-type atoms with energy levels $|g\rangle$, $|m\rangle$ and $|e\rangle$ are embedded in a single mode cavity with resonant frequency $\omega _\textrm {cav}$. The $|g\rangle \leftrightarrow |m\rangle$ transition is driven by a probe field with Rabi frequency $\eta$ and interacts with the cavity photons simultaneously. Another strong control field with Rabi frequency $\Omega _c$ couples with the $|m\rangle \leftrightarrow |e\rangle$ transition, forming a ladder type EIT configuration.

 figure: Fig. 1.

Fig. 1. (a) Schematic diagram of a two atoms cavity QED system. Two identical three-level ladder-type atoms are coupled in a single mode cavity and driven by a probe field $\eta$ with angular frequency $\omega _p$ and a control field $\Omega _c$ with angular frequency $\omega _c$ simultaneously. The energy levels of each atom are labeled by $|\alpha \rangle$ ($\alpha =g,m,e$). Here, $\gamma _{\alpha \beta }$ ($\alpha,\beta =g,m,e$) denotes the spontaneous emission rate from state $|\beta \rangle$ to state $|\alpha \rangle$, and $\kappa$ denotes the cavity decay rate. (b) The dressed state picture and arrows denote the main single photon and two photon excitation pathways where arrows A, C represent the single photon excitation, and arrows B, D represent the two photon excitation. (c) Plots of radiance witness $R$ (orange solid curves), $\log _{10}[g^{(2)}(0)]$ (green dotted curves), and $\log _{10}[g^{(3)}(0)]$ (purple dashed curves) as a function of the probe field intensity $\eta$ with $\Omega _c=0$. Other system parameters are given by $g/\kappa =10$, $\phi _{z}=\pi$, $\Delta =\sqrt {6}/2g$, $\gamma _{me}/\kappa =0.01$, and $\gamma _{gm}/\kappa =1$, respectively. The black dash-dotted line denotes $g^{(2)}(0)=g^{(3)}(0)=1$.

Download Full Size | PPT Slide | PDF

Under the rotating wave approximation, the Hamiltonian of the system can be written as

$$H = H_0+H_I+H_D,$$
where $H_0=\sum _{i=1,2}(\Delta _\textrm {cav}a^{\dagger} a+\Delta _e\sigma _{ee}^{(i)}+\Delta _m\sigma _{mm}^{(i)})$ with the i-th (i=1,2) atom’s operator $\sigma _{\alpha \beta }^{(i)}=|\alpha \rangle _{i}\langle \beta |$ ($\alpha,\beta =g,m,e$) and $a^{\dagger}\ (a)$ being the photon creation (annihilation) operator. The cavity detuning is defined as $\Delta _\textrm {cav}=\omega _\textrm {cav}-\omega _p$. The atomic one-photon and two photon detunings are given by $\Delta _m=\omega _{me}-\omega _p$ and $\Delta _e=\omega _{eg}-\omega _p-\omega _C$ where $\omega _{\alpha \beta }=\omega _\alpha -\omega _\beta \ (\alpha =g,m,e)$ with $\omega _{p(C)}$ being the probe (control) field angular frequency and $\hbar \omega _\alpha$ being the energy of state $|\alpha \rangle$. Here, we set $\Delta _e=\Delta _m=\Delta _\textrm {cav}=\Delta$ for mathematical simplicity. The atom-cavity interaction is described as $H_I=\sum _{i=1,2}[g_i(a^{\dagger}\sigma _{gm}^{(i)}+a\sigma _{mg}^{(i)})]$ where $g_i=2\pi z_i/\lambda _\textrm {cav}$ is the position-dependent coupling strength with $z_i$ and $\lambda _\textrm {cav}$ being the position of the i-th atom and the wavelength of the cavity mode, respectively. Carefully choosing the positions of two atoms, we set $g_1=-g_2=g_0$ in this work. The driving term is $H_D=\sum _{i=1,2}[\eta (\sigma _{gm}^{(i)}+\sigma _{mg}^{(i)})+\Omega _c(\sigma _{me}^{(i)}+\sigma _{em}^{(i)})]$.

Generally, the dynamical behavior of the whole system can be described by the master equation, i.e.,

$$\frac{d}{dt}\rho={-}\frac{i}{\hbar}[H,\rho]+{\cal {L}}_{\kappa}\rho+{\cal{L}}_\textrm{atom}^{(1)}\rho+{\cal {L}}_\textrm{atom}^{(2)}\rho$$
where $\rho$ is the density matrix of the system. In Eq. (2), the decay terms are given by
$${\cal L}_{\kappa}\rho=\kappa(2a\rho a^{\dagger}-a^{\dagger}a\rho-\rho a^{\dagger}a),\ \textrm{and}$$
$$\begin{aligned}{\cal L}_\textrm{atom}^{(i)}\rho=& \gamma_{gm}(2\sigma_{mg}^{(i)}\rho\sigma_{gm}^{(i)}-\sigma_{gm}^{(i)}\sigma_{mg}^{(i)}\rho-\rho\sigma_{gm}^{(i)}\sigma_{mg}^{(i)})\\ &+\gamma_{me}(2\sigma_{em}^{(i)}\rho\sigma_{me}^{(i)}-\sigma_{me}^{(i)}\sigma_{em}^{(i)}\rho-\rho\sigma_{me}^{(i)}\sigma_{em}^{(i)}) \end{aligned}$$
represent the cavity loss with decay rate $\kappa$ and the atomic spontaneous emission of the i-th atom with decay rate $\gamma _{gm}$ ($\gamma _{me}$) from state $|m\rangle$ ($|e\rangle$), respectively.

3. Perturbation theory

To show the physical mechanism, we first use the perturbation theory to analysis the eigenvalues and eigenstates of the system by neglecting the detunings and the weak probe field. Defining the collective states $|GG,n\rangle =|gg,n\rangle$, $|MG\pm,n-1\rangle =(|mg,n-1\rangle \pm |gm,n-1\rangle )/\sqrt {2}$, $|EG\pm,n-1\rangle =(|eg,n-1\rangle \pm |ge,n-1\rangle )/\sqrt {2}$, $|MM,n-2\rangle =|mm,n-2\rangle$, $|EM\pm,n-2\rangle =(|em,n-2\rangle \pm |me,n-2\rangle )/\sqrt {2}$ and $|EE,n-2\rangle =|ee,n-2\rangle$ with $|n\rangle$ being the Fock state of the cavity field, one can easily obtain the eigenstates in one photon space:

$$\begin{aligned} \Psi_0^{(1)}&=\frac{-\Omega_c}{\sqrt{2}g}|GG,1\rangle+|EG-,0\rangle\\ \Psi_{1\pm}^{(1)}&={\pm}|MG+,0\rangle+|EG+,0\rangle\\ \Psi_{2\pm}^{(1)}&=\frac{\sqrt{2}g}{\Omega_c}|GG,1\rangle\pm\frac{\sqrt{2g^2+\Omega_c^2}}{\Omega_c}|MG-,0\rangle+|EG-,0\rangle \end{aligned}$$
with eigenvalues $\lambda _0^{(1)}=0$, $\lambda _{1\pm }^{(1)}=\pm \Omega _c$ and $\lambda _{2\pm }^{(1)}=\pm \sqrt {2g^2+\Omega _c^2}$, respectively. Compared with the case of $\Omega _c=0$ [23], the control field induced two additional single photon excitation pathways, i.e., $\Psi ^{(0)}{\overset{1\textrm{ph}}{\rightarrow}}\Psi ^{(1)}_{1\pm }$ [denoted by blue solid arrows C in Fig. 1(b)], while no cavity photon will be produced. Thus, they will not lead to single photon blockade.

Likewise, the eigenstates in two photon space are given by

$$\begin{aligned} \Psi_{0+}^{(2)}&=-\frac{\Omega_c^2}{\sqrt{2}g^2}|GG,2\rangle+\frac{\sqrt{2}\Omega_c}{g}|EG-,1\rangle+|EE,0\rangle\\ \Psi_{0-}^{(2)}&=\frac{g^2-\Omega_c^2}{\sqrt{2}g^2}|GG,2\rangle+\frac{\sqrt{2}\Omega_c}{g}|EG-,1\rangle+|MM,0\rangle\\ \Psi_0^{(2)}&=\frac{g}{\Omega_c}|MG+,1\rangle+|EM-,0\rangle\\ \Psi_{1\pm}^{(2)}&=-\frac{\Omega_c}{g}|MG+,1\rangle\mp\frac{\sqrt{g^2+\Omega_c^2}}{g}|EG+,1\rangle+|EM-,0\rangle\\ \Psi_{2\pm}^{(2)}&=\frac{\gamma+\sqrt{\beta}}{3\sqrt{2}\Omega_c^2}|GG,2\rangle\pm\frac{\sqrt{\alpha-\sqrt{\beta}}(\gamma+\sqrt{\beta})}{12g\Omega_c^2}|MG-,1\rangle-\frac{\gamma-6g^2+\sqrt{\beta}}{6\sqrt{2}g\Omega_c}|EG-,1\rangle\\ &\pm\frac{\sqrt{\alpha-\sqrt{\beta}}}{2\Omega_c}|EM+,0\rangle+\frac{-\gamma+6\Omega_c^2-\sqrt{\beta}}{6\Omega_c^2}|MM,0\rangle+|EE,0\rangle\\ \Psi_{3\pm}^{(2)}&=\frac{-\gamma+\sqrt{\beta}}{3\sqrt{2}\Omega_c^2}|GG,2\rangle\pm\frac{\sqrt{\alpha+\sqrt{\beta}}(-\gamma+\sqrt{\beta})}{12g\Omega_c^2}|MG-,1\rangle+\frac{-\gamma+6g^2+\sqrt{\beta}}{6\sqrt{2}g\Omega_c}|EG-,1\rangle\\ &\pm\frac{\sqrt{\alpha+\sqrt{\beta}}}{2\Omega_c}|EM+,0\rangle+\frac{-\gamma+6\Omega_c^2+\sqrt{\beta}}{6\Omega_c^2}|MM,0\rangle+|EE,0\rangle \end{aligned}$$
where $\alpha =7g^2+5\Omega _c^2$, $\beta =25g^4+6g^2\Omega _c^2+9\Omega _c^4$ and $\gamma =-5g^2+3\Omega _c^2$. The corresponding eigenvalues are $\lambda _0^{(2)}=\lambda _{0\pm }^{(2)}=0$, $\lambda _{1\pm }^{(2)}=\pm \sqrt {g^2+\Omega _c^2}$, $\lambda _{2\pm }^{(2)}=\pm \sqrt {(\alpha -\sqrt {\beta })/2}$ and $\lambda _{3\pm }^{(2)}=\pm \sqrt {(\alpha +\sqrt {\beta })/2}$.

For $\Omega _c=0$, as shown in Fig. 1(b), the eigenstates $\Psi _{1\pm }^{(1)}$ are absent, and the single photon excitation $\Psi ^{(0)}{\overset{1\textrm{ph}}{\rightarrow}}\Psi ^{(1)}_{2\pm }$ (blue dashed arrows labeled by A) are not allowed. Thus, the two photon excitation $\Psi ^{(0)}{\overset{2\textrm{ph}}{\rightarrow}}\Psi _{3\pm }^{(2)}$ (orange arrows labeled by B) are predominant, and then two photon blockade can be observed by increasing the probe field intensity. Consequently, the second order correlation function is larger than unity, but the third order correlation function $g^{(3)}(0)<1$ [see Fig. 1(c)]. In such a system, the collective radiation behavior of two atoms can be quantified by calculating the radiance witness $R=(\langle a^{\dagger}a\rangle _2-2\langle a^{\dagger}a\rangle _1)/(2\langle a^{\dagger}a\rangle _1)$, where $\langle a^{\dagger}a\rangle _{i}$ indicates the mean photon number with $i=1,2$ atoms in the cavity. Here, $R=0$ reveals an uncorrelated scattering. $R<0$ indicates that the radiation is suppressed, corresponding to a subradiation, while $R>0$ means the radiation is enhanced. Particularly, $R=1$ implies that the radiation scales with the square of the number of atoms, i.e., the superradiance [34]. $R>1$ denotes the domain of hyperradiance [35]. In the case of $\Omega _c=0$, obviously, the witness $R<1$, i.e., the collective radiation behavior is subradiance when the two photon blockade occurs [see orange curve in Fig. 1(c)].

For the case of $\Omega _c\neq 0$, more excitation pathways appear in one- and two-photon spaces, e.g., $\Psi ^{(0)}{\overset{1\textrm{ph}}{\rightarrow}}\Psi _{1\pm }^{(1)}$ (blue solid arrows labeled by C) and $\Psi ^{(0)}{\overset{2\textrm{ph}}{\rightarrow}}\Psi _{2\pm }^{(2)}$ (red arrows labeled by D). The former will not cause any photon in the cavity, while the later results in two photon blockade due to the energy level anharmonicity.

To verify these analysis, we calculate the mean photon number $\langle a^{\dagger} a\rangle$ (blue solid curve) and the value of $\langle a^{\dagger} a^{\dagger} aa\rangle$ (orange dashed curve), characterizing the two photon process, as a function of the detuning $\Delta$. Here, we choose $\eta /\kappa =1$ and the control field is chosen as (a) $\Omega _c/\kappa =0$ and (b) $10$, respectively. When $\Omega _c/\kappa =0$, as shown in Fig. 2(a), there exist three peaks in the cavity excitation spectrum, corresponding to the detunings $\Delta =0$ and $\Delta =\pm \sqrt {6}g/2$, respectively. Although the two photon blockade with $g^{(3)}<1$ and $g^{(2)}>1$ can be achieved at $\Delta =\pm \sqrt {6}g/2$, the mean photon number is too small to be detected. For $\Omega _c/\kappa =10$, as shown in Fig. 2(b), there exist four peaks in the cavity excitation spectrum with detunings $\Delta =\pm \sqrt {(\alpha -\sqrt {\beta })/8}$ and $\Delta =\pm \sqrt {(\alpha +\sqrt {\beta })/8}$, corresponding to arrows D and B respectively. Obviously, the two photon processes are still dominant at these four detunings. Particularly, for the detunig $\Delta =\pm \sqrt {(\alpha -\sqrt {\beta })/8}$ (see arrows D), the mean photon number can be significantly enhanced, resulting in strong two photon blockade with reasonable photon number.

 figure: Fig. 2.

Fig. 2. Semi-logarithmic plots of the mean photon number $\log _{10}[\langle a^{\dagger} a\rangle ]$ (blue solid curve) and the value of $\log _{10}[\langle a^{\dagger} a^{\dagger} aa\rangle ]$ (orange dashed curve), as a function of the detuning $\Delta$, with (a) $\Omega _c/\kappa =0$ and (b) $\Omega _c/\kappa =10$, respectively. Here, B and D denote the two-photon excitation.

Download Full Size | PPT Slide | PDF

4. Two photon blockade with superradiance or hyperradiance

To show the quality of two photon blockade, we plot the third order correlation function of cavity photons in Fig. 3(a). The second order correlation function is always larger than unity. As shown in panel (a), $g^{(3)}(0)<1$ near the detunings $\Delta =\pm \sqrt {(\alpha +\sqrt {\beta })/8}$ and $\Delta =\pm \sqrt {(\alpha -\sqrt {\beta })/8}$, indicated by (B) the white dash-dotted and (D) white dashed curves respectively. At the detuning of $\Delta =\pm \sqrt {(\alpha +\sqrt {\beta })/8}$, the energy level anharmonicity is enhanced by the control field, and the value of $g^{(3)}(0)$ decreases significantly with the increase of $\Omega _c$, yielding a very strong improvement of the two photon blockade (see the dash-dotted curves). With these system parameters, the third order correlation function can be reduced to $10^{-5}$.

 figure: Fig. 3.

Fig. 3. Plots of (a) $\log _{10}[g^{(3)}(0)]$ and (b) witness $R$ as functions of the detuning $\Delta$ and the control field intensity $\Omega _c$. Here, $g^{(2)}(0)$ is always larger than unity. The white dash-dotted, black solid and dashed curves denote excitation pathways labeled by B, C and D, respectively.

Download Full Size | PPT Slide | PDF

Likewise, near the detuning $\Delta =\pm \sqrt {(\alpha -\sqrt {\beta })/8}$, the two photon blockade can also be improved by choosing a suitable control field $\Omega _c$. In particular, as shown in Fig. 3(a), there exists two crossing points, where resonant two photon excitation (i.e., $\Delta =\pm \sqrt {(\alpha -\sqrt {\beta })/8}$) and single photon excitation (i.e., $\Delta =\pm \Omega _c$) can be achieved simultaneously. Thus, one can easily obtain the condition, i.e.,

$$\Omega_c=\Delta={\pm}\sqrt{2}g/2,$$
to realizing strong two photon blockade with enhanced collective radiation behavior. To show this point, we plot the radiance witness $R$ in Fig. 3(b). Clearly, the system exhibits a subradiant behavior (i.e., $R<0$) near $\Delta =\pm \sqrt {(\alpha +\sqrt {\beta })/8}$, but it becomes superradiance or hyperradiance ($R\geq 1$) near the frequencies of $\Delta =\pm \sqrt {(\alpha -\sqrt {\beta })/8}$ (see white dashed curves).

Finally, let’s discuss the influence of the pump field intensity to the two photon blockade and radiation behavior by choosing the detuning near the crossing point $\Delta =\sqrt {2}g/2$. In Fig. 4, the third-order correlation function $g^{(3)}(0)$ [panel (a)] and the witness parameter $R$ [panel (b)] are plotted as functions of the pump field intensity and the control field Rabi frequency, respectively. Clearly, the two photon blockade with hyperradiant radiation can be achieved near the control field Rabi frequency $\Delta =\sqrt {2}g/2$. By choosing a suitable pump field intensity, the magnitude of the third-order correlation function can be less than $10^{-3}$, while the magnitude of the mean photon number is above $0.01$ [see the black curves in panel (a)]. It is worth to point out that this value of the mean photon number is similar to the recent experimental report in Ref. [27], but the value of the third order correlation function is more than two times order smaller than that in single atom cavity QED system. With this strongly improved two photon blockade, the hyperradiant behavior remains unchanged as shown in Fig. 4(b). Further increasing the pump field intensity, the two photon blockade will be lifted since the states in multiphoton spaces will be excited. It is noted that such a system can be implemented in various quantum systems, such as the Rydberg cavity QED system [3638] and superconducting circuit QED system [3941].

 figure: Fig. 4.

Fig. 4. Plots of (a) $\log _{10}[g^{(3)}(0)]$ and (b) witness $R$ as functions of the probe field intensity $\eta$ and the control field Rabi frequency $\Omega _c$. The detuning is chosen near the crossing point, i.e., $\Delta /\kappa =\sqrt {2}g/2$. In panel (a), the white domain implies $g^{(3)}(0)>1$, and contour curves denote the mean photon number.

Download Full Size | PPT Slide | PDF

5. Conclusion

In conclusion, we have shown that a system of two three-level atoms in a single mode cavity with different atom-cavity coupling strengths can lead to stronger two-photon blockade with superradiance or hyperradiance behavior when these two atoms are driven by a probe field and a control field. In the presence of the control field, the system dressed states are significantly changed and additional excitation pathways appear in one and two photon spaces, respectively. Since the asymmetric states are decoupled from the probe field and the control field induced single photon excitation will not result in any cavity photons, two photon transitions are predominant in such a system. Carefully choosing the control field intensity, i.e., $\Omega _c=\Delta =\pm \sqrt {2}g/2$, resonant single-photon and two-photon excitation can be achieved at the same frequency of the probe field. As a result, the third-order correlation function $g^{(3)}(0)$ can be reduced to $10^{-4}$, yielding strong two photon blockade phenomenon. At the same time, significantly enhanced mean photon number and superradiance or hyperradiance behavior of two atoms can be achieved in such a system, which can be used as a converter of a weak coherent field to two correlated photons.

Funding

National Natural Science Foundation of China (11774262, 11874287, 61975154).

Disclosures

The authors declare no conflicts of interest.

Data availability

No data was generated in this study.

References

1. A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003). [CrossRef]  

2. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1999).

3. G. S. Agarwal, Quantum optics (Cambridge University, 2012).

4. K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005). [CrossRef]  

5. C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011). [CrossRef]  

6. T. Pittman, B. Jacobs, and J. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A 66(4), 042303 (2002). [CrossRef]  

7. M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009). [CrossRef]  

8. J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004). [CrossRef]  

9. J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021). [CrossRef]  

10. M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011). [CrossRef]  

11. H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96(5), 053810 (2017). [CrossRef]  

12. H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018). [CrossRef]  

13. F. Zou, D. Lai, and J. Liao, “Enhancement of photon blockade effect via quantum interference,” Opt. Express 28(11), 16175–16190 (2020). [CrossRef]  

14. C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018). [CrossRef]  

15. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999). [CrossRef]  

16. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008). [CrossRef]  

17. I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002). [CrossRef]  

18. A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011). [CrossRef]  

19. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107(6), 063601 (2011). [CrossRef]  

20. A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107(6), 063602 (2011). [CrossRef]  

21. B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019). [CrossRef]  

22. H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018). [CrossRef]  

23. C. Zhu, Y. Yang, and G. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017). [CrossRef]  

24. G. Hovsepyan, A. Shahinyan, and G. Kryuchkyan, “Multiphoton blockades in pulsed regimes beyond stationary limits,” Phys. Rev. A 90(1), 013839 (2014). [CrossRef]  

25. A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013). [CrossRef]  

26. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008). [CrossRef]  

27. C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017). [CrossRef]  

28. K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019). [CrossRef]  

29. C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021). [CrossRef]  

30. A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011). [CrossRef]  

31. F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018). [CrossRef]  

32. J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017). [CrossRef]  

33. J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019). [CrossRef]  

34. R. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954). [CrossRef]  

35. M. Pleinert, J. Zanthier, and G. Agarwal, “Hyperradiance from collective behavior of coherently driven atoms,” Optica 4(7), 779–785 (2017). [CrossRef]  

36. R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015). [CrossRef]  

37. S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012). [CrossRef]  

38. Y. Sun and P. X. Chen, “Analysis of atom–photon quantum interface with intracavity rydberg-blocked atomic ensemble via two-photon transition,” Optica 5(12), 1492–1501 (2018). [CrossRef]  

39. W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020). [CrossRef]  

40. Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020). [CrossRef]  

41. J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017). [CrossRef]  

References

  • View by:

  1. A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
    [Crossref]
  2. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1999).
  3. G. S. Agarwal, Quantum optics (Cambridge University, 2012).
  4. K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
    [Crossref]
  5. C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
    [Crossref]
  6. T. Pittman, B. Jacobs, and J. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A 66(4), 042303 (2002).
    [Crossref]
  7. M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
    [Crossref]
  8. J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
    [Crossref]
  9. J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
    [Crossref]
  10. M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011).
    [Crossref]
  11. H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96(5), 053810 (2017).
    [Crossref]
  12. H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
    [Crossref]
  13. F. Zou, D. Lai, and J. Liao, “Enhancement of photon blockade effect via quantum interference,” Opt. Express 28(11), 16175–16190 (2020).
    [Crossref]
  14. C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
    [Crossref]
  15. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999).
    [Crossref]
  16. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
    [Crossref]
  17. I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002).
    [Crossref]
  18. A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
    [Crossref]
  19. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107(6), 063601 (2011).
    [Crossref]
  20. A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107(6), 063602 (2011).
    [Crossref]
  21. B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
    [Crossref]
  22. H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018).
    [Crossref]
  23. C. Zhu, Y. Yang, and G. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
    [Crossref]
  24. G. Hovsepyan, A. Shahinyan, and G. Kryuchkyan, “Multiphoton blockades in pulsed regimes beyond stationary limits,” Phys. Rev. A 90(1), 013839 (2014).
    [Crossref]
  25. A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
    [Crossref]
  26. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
    [Crossref]
  27. C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017).
    [Crossref]
  28. K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019).
    [Crossref]
  29. C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021).
    [Crossref]
  30. A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
    [Crossref]
  31. F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018).
    [Crossref]
  32. J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
    [Crossref]
  33. J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019).
    [Crossref]
  34. R. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
    [Crossref]
  35. M. Pleinert, J. Zanthier, and G. Agarwal, “Hyperradiance from collective behavior of coherently driven atoms,” Optica 4(7), 779–785 (2017).
    [Crossref]
  36. R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
    [Crossref]
  37. S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
    [Crossref]
  38. Y. Sun and P. X. Chen, “Analysis of atom–photon quantum interface with intracavity rydberg-blocked atomic ensemble via two-photon transition,” Optica 5(12), 1492–1501 (2018).
    [Crossref]
  39. W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
    [Crossref]
  40. Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
    [Crossref]
  41. J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
    [Crossref]

2021 (2)

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021).
[Crossref]

2020 (3)

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

F. Zou, D. Lai, and J. Liao, “Enhancement of photon blockade effect via quantum interference,” Opt. Express 28(11), 16175–16190 (2020).
[Crossref]

2019 (3)

J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019).
[Crossref]

K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019).
[Crossref]

B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
[Crossref]

2018 (5)

H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018).
[Crossref]

F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018).
[Crossref]

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Y. Sun and P. X. Chen, “Analysis of atom–photon quantum interface with intracavity rydberg-blocked atomic ensemble via two-photon transition,” Optica 5(12), 1492–1501 (2018).
[Crossref]

2017 (6)

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96(5), 053810 (2017).
[Crossref]

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
[Crossref]

M. Pleinert, J. Zanthier, and G. Agarwal, “Hyperradiance from collective behavior of coherently driven atoms,” Optica 4(7), 779–785 (2017).
[Crossref]

C. Zhu, Y. Yang, and G. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017).
[Crossref]

2015 (1)

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

2014 (1)

G. Hovsepyan, A. Shahinyan, and G. Kryuchkyan, “Multiphoton blockades in pulsed regimes beyond stationary limits,” Phys. Rev. A 90(1), 013839 (2014).
[Crossref]

2013 (1)

A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
[Crossref]

2012 (1)

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

2011 (6)

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
[Crossref]

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107(6), 063601 (2011).
[Crossref]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107(6), 063602 (2011).
[Crossref]

M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011).
[Crossref]

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

2009 (1)

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]

2008 (2)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

2005 (1)

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

2004 (1)

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

2003 (1)

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

2002 (2)

T. Pittman, B. Jacobs, and J. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A 66(4), 042303 (2002).
[Crossref]

I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002).
[Crossref]

1999 (1)

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999).
[Crossref]

1954 (1)

R. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Abdumalikov, A.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Agarwal, G.

K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019).
[Crossref]

C. Zhu, Y. Yang, and G. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

M. Pleinert, J. Zanthier, and G. Agarwal, “Hyperradiance from collective behavior of coherently driven atoms,” Optica 4(7), 779–785 (2017).
[Crossref]

Agarwal, G. S.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

G. S. Agarwal, Quantum optics (Cambridge University, 2012).

Agner, J. A.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Aiello, G.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

Alt, W.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

Aprili, M.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

Aumentado, J.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

Bajer, J.

A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
[Crossref]

Bamba, M.

M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011).
[Crossref]

Baur, M.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Benson, O.

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999).
[Crossref]

Birnbaum, K.

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Blais, A.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Boca, A.

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Boozer, A.

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Børkje, K.

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107(6), 063602 (2011).
[Crossref]

Bouwmeester, D.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Bowen, W.

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Bowers, J.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Bozyigit, D.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Buck, J.

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

Carusotto, I.

M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011).
[Crossref]

Chao, Y.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Chen, P. X.

Chou, C.

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Ciuti, C.

M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011).
[Crossref]

da Silva, M.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Davis, C.

I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002).
[Crossref]

Deng, L.

C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021).
[Crossref]

Dicke, R.

R. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Dombi, A.

J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
[Crossref]

Domokos, P.

J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
[Crossref]

Dong, H.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Duan, L.

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Eichler, C.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Englund, D.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Estève, J.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

Fan, H.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Faraon, A.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Féchant, M.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

Feng, W.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Filipp, S.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Fink, J.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Fink, J. M.

J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
[Crossref]

Flayac, H.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96(5), 053810 (2017).
[Crossref]

Fleischhauer, M.

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
[Crossref]

Franson, J.

T. Pittman, B. Jacobs, and J. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A 66(4), 042303 (2002).
[Crossref]

Frey, J.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Gabelli, J.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

Girvin, S. M.

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107(6), 063602 (2011).
[Crossref]

Gorshkov, A. V.

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
[Crossref]

Gossard, A.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Gungor, A.

I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002).
[Crossref]

Guo, Q.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Hamsen, C.

C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

Hogan, S. D.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Hou, K.

C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021).
[Crossref]

K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019).
[Crossref]

J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019).
[Crossref]

Houck, A. A.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

Hovsepyan, G.

G. Hovsepyan, A. Shahinyan, and G. Kryuchkyan, “Multiphoton blockades in pulsed regimes beyond stationary limits,” Phys. Rev. A 90(1), 013839 (2014).
[Crossref]

Huang, R.

B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
[Crossref]

Imamoglu, A.

M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011).
[Crossref]

Jacobs, B.

T. Pittman, B. Jacobs, and J. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A 66(4), 042303 (2002).
[Crossref]

Jing, H.

B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
[Crossref]

Kampschulte, T.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

Kan, H.

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999).
[Crossref]

Kim, J.

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999).
[Crossref]

Kimble, H.

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Kimble, T.

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Koch, L.

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]

Koch, M.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

Kryuchkyan, G.

G. Hovsepyan, A. Shahinyan, and G. Kryuchkyan, “Multiphoton blockades in pulsed regimes beyond stationary limits,” Phys. Rev. A 90(1), 013839 (2014).
[Crossref]

Kubanek, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

Kübler, H.

F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018).
[Crossref]

Kumar, S.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Kuzmich, A.

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

Lai, D.

Lang, C.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Li, B.

B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
[Crossref]

Li, H.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Li, T.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Liao, J.

Lin, J.

J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019).
[Crossref]

Liu, W.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Liu, Y.

A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
[Crossref]

Löffler, W.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Löw, R.

F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018).
[Crossref]

Lu, Y.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Lukin, M. D.

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
[Crossref]

Macha, T.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

McKeever, J.

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

Merkt, F.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Meschede, D.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

Miller, R.

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

Miranowicz, A.

B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
[Crossref]

A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
[Crossref]

Morvan, A.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

Murr, K.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

Nori, F.

A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
[Crossref]

Norman, J.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Northup, T.

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Nunnenkamp, A.

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107(6), 063602 (2011).
[Crossref]

Otterbach, J.

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
[Crossref]

Ourjoumtsev, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

Paprzycka, M.

A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
[Crossref]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Pfau, T.

F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018).
[Crossref]

Pinkse, P. W.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

Pittman, T.

T. Pittman, B. Jacobs, and J. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A 66(4), 042303 (2002).
[Crossref]

Pleinert, M.

Pohl, T.

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
[Crossref]

Rabl, P.

P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107(6), 063601 (2011).
[Crossref]

Ratschbacher, L.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

Reimann, R.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

Rempe, G.

C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017).
[Crossref]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

Ren, W.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Ripka, F.

F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018).
[Crossref]

Savona, V.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96(5), 053810 (2017).
[Crossref]

Schmidt, S.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

Scholz, M.

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]

Schuster, I.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

Scully, M. O.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1999).

Sedlacek, J.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Shaffer, J. P.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Shahinyan, A.

G. Hovsepyan, A. Shahinyan, and G. Kryuchkyan, “Multiphoton blockades in pulsed regimes beyond stationary limits,” Phys. Rev. A 90(1), 013839 (2014).
[Crossref]

Shang, C.

H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018).
[Crossref]

Shen, H.

H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018).
[Crossref]

Sheng, J.

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

Smolyaninov, I.

I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002).
[Crossref]

Snijders, H.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Song, C.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Song, X.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Spietz, L.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

Srinivasan, S. J.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

Steffen, L.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Stoltz, N.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Sun, H.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Sun, Y.

Tang, J.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Tang, L.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Thau, N.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

Thiele, T.

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

Tolazzi, K. N.

C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017).
[Crossref]

Türeci, H. E.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

van Exter, M.

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

Vaneph, C.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

Vuckovic, J.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Vukics, A.

J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
[Crossref]

Wallraff, A.

J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
[Crossref]

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

Wang, D. W.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Wang, H.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Wang, Z.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Wilk, T.

C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017).
[Crossref]

Wu, H.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Wu, Y.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Xia, K.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Xiao, M.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Xu, X.

B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
[Crossref]

Yamamoto, Y.

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999).
[Crossref]

Yang, Y.

C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021).
[Crossref]

K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019).
[Crossref]

J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019).
[Crossref]

C. Zhu, Y. Yang, and G. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

Yi, X.

H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018).
[Crossref]

Yoon, S.

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

Zanthier, J.

Zayats, A.

I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002).
[Crossref]

Zhang, H.

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Zhang, X.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Zheng, D.

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Zhou, Y.

H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018).
[Crossref]

Zhu, C.

C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021).
[Crossref]

K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019).
[Crossref]

J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019).
[Crossref]

C. Zhu, Y. Yang, and G. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

Zhu, S. Y.

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Zou, F.

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1999).

Nat. Phys. (1)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Nature (3)

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397(6719), 500–503 (1999).
[Crossref]

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L. Duan, and H. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref]

K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and T. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Opt. Express (1)

Optica (2)

Photonics Res. (2)

B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, “Nonreciprocal unconventional photon blockade in a spinning optomechanical system,” Photonics Res. 7(6), 630–641 (2019).
[Crossref]

C. Zhu, K. Hou, Y. Yang, and L. Deng, “Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity qed system with dipole–dipole interaction,” Photonics Res. 9(7), 1264–1271 (2021).
[Crossref]

Phys. Rev. (1)

R. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Phys. Rev. A (10)

K. Hou, C. Zhu, Y. Yang, and G. Agarwal, “Interfering pathways for photon blockade in cavity qed with one and two qubits,” Phys. Rev. A 100(6), 063817 (2019).
[Crossref]

J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, and J. P. Shaffer, “Intracavity rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity,” Phys. Rev. A 96(3), 033813 (2017).
[Crossref]

J. Lin, K. Hou, C. Zhu, and Y. Yang, “Manipulation and improvement of multiphoton blockade in a cavity-qed system with two cascade three-level atoms,” Phys. Rev. A 99(5), 053850 (2019).
[Crossref]

H. Shen, C. Shang, Y. Zhou, and X. Yi, “Unconventional single-photon blockade in non-markovian systems,” Phys. Rev. A 98(2), 023856 (2018).
[Crossref]

C. Zhu, Y. Yang, and G. Agarwal, “Collective multiphoton blockade in cavity quantum electrodynamics,” Phys. Rev. A 95(6), 063842 (2017).
[Crossref]

G. Hovsepyan, A. Shahinyan, and G. Kryuchkyan, “Multiphoton blockades in pulsed regimes beyond stationary limits,” Phys. Rev. A 90(1), 013839 (2014).
[Crossref]

A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87(2), 023809 (2013).
[Crossref]

T. Pittman, B. Jacobs, and J. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A 66(4), 042303 (2002).
[Crossref]

M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83(2), 021802 (2011).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96(5), 053810 (2017).
[Crossref]

Phys. Rev. Appl. (1)

J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl. 15(6), 064020 (2021).
[Crossref]

Phys. Rev. Lett. (15)

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121(4), 043602 (2018).
[Crossref]

I. Smolyaninov, A. Zayats, A. Gungor, and C. Davis, “Single-photon tunneling via localized surface plasmons,” Phys. Rev. Lett. 88(18), 187402 (2002).
[Crossref]

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107(5), 053602 (2011).
[Crossref]

P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107(6), 063601 (2011).
[Crossref]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107(6), 063602 (2011).
[Crossref]

H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121(4), 043601 (2018).
[Crossref]

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. Fink, A. Abdumalikov, M. Baur, S. Filipp, M. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106(24), 243601 (2011).
[Crossref]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref]

C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an atom-driven cavity qed system,” Phys. Rev. Lett. 118(13), 133604 (2017).
[Crossref]

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon-photon interactions via rydberg blockade,” Phys. Rev. Lett. 107(13), 133602 (2011).
[Crossref]

R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, and D. Meschede, “Cavity-modified collective rayleigh scattering of two atoms,” Phys. Rev. Lett. 114(2), 023601 (2015).
[Crossref]

S. D. Hogan, J. A. Agner, F. Merkt, T. Thiele, S. Filipp, and A. Wallraff, “Driving rydberg-rydberg transitions from a coplanar microwave waveguide,” Phys. Rev. Lett. 108(6), 063004 (2012).
[Crossref]

W. Ren, W. Liu, C. Song, H. Li, Q. Guo, Z. Wang, D. Zheng, G. S. Agarwal, M. O. Scully, S. Y. Zhu, H. Wang, and D. W. Wang, “Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit,” Phys. Rev. Lett. 125(13), 133601 (2020).
[Crossref]

Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong, D. Zheng, H. Wang, and D. W. Wang, “Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit,” Phys. Rev. Lett. 124(1), 013601 (2020).
[Crossref]

Phys. Rev. X (1)

J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observation of the photon-blockade breakdown phase transition,” Phys. Rev. X 7(1), 011012 (2017).
[Crossref]

Science (2)

F. Ripka, H. Kübler, R. Löw, and T. Pfau, “A room-temperature single-photon source based on strongly interacting rydberg atoms,” Science 362(6413), 446–449 (2018).
[Crossref]

J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref]

Other (2)

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1999).

G. S. Agarwal, Quantum optics (Cambridge University, 2012).

Data availability

No data was generated in this study.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic diagram of a two atoms cavity QED system. Two identical three-level ladder-type atoms are coupled in a single mode cavity and driven by a probe field $\eta$ with angular frequency $\omega _p$ and a control field $\Omega _c$ with angular frequency $\omega _c$ simultaneously. The energy levels of each atom are labeled by $|\alpha \rangle$ ($\alpha =g,m,e$). Here, $\gamma _{\alpha \beta }$ ($\alpha,\beta =g,m,e$) denotes the spontaneous emission rate from state $|\beta \rangle$ to state $|\alpha \rangle$, and $\kappa$ denotes the cavity decay rate. (b) The dressed state picture and arrows denote the main single photon and two photon excitation pathways where arrows A, C represent the single photon excitation, and arrows B, D represent the two photon excitation. (c) Plots of radiance witness $R$ (orange solid curves), $\log _{10}[g^{(2)}(0)]$ (green dotted curves), and $\log _{10}[g^{(3)}(0)]$ (purple dashed curves) as a function of the probe field intensity $\eta$ with $\Omega _c=0$. Other system parameters are given by $g/\kappa =10$, $\phi _{z}=\pi$, $\Delta =\sqrt {6}/2g$, $\gamma _{me}/\kappa =0.01$, and $\gamma _{gm}/\kappa =1$, respectively. The black dash-dotted line denotes $g^{(2)}(0)=g^{(3)}(0)=1$.
Fig. 2.
Fig. 2. Semi-logarithmic plots of the mean photon number $\log _{10}[\langle a^{\dagger} a\rangle ]$ (blue solid curve) and the value of $\log _{10}[\langle a^{\dagger} a^{\dagger} aa\rangle ]$ (orange dashed curve), as a function of the detuning $\Delta$, with (a) $\Omega _c/\kappa =0$ and (b) $\Omega _c/\kappa =10$, respectively. Here, B and D denote the two-photon excitation.
Fig. 3.
Fig. 3. Plots of (a) $\log _{10}[g^{(3)}(0)]$ and (b) witness $R$ as functions of the detuning $\Delta$ and the control field intensity $\Omega _c$. Here, $g^{(2)}(0)$ is always larger than unity. The white dash-dotted, black solid and dashed curves denote excitation pathways labeled by B, C and D, respectively.
Fig. 4.
Fig. 4. Plots of (a) $\log _{10}[g^{(3)}(0)]$ and (b) witness $R$ as functions of the probe field intensity $\eta$ and the control field Rabi frequency $\Omega _c$. The detuning is chosen near the crossing point, i.e., $\Delta /\kappa =\sqrt {2}g/2$. In panel (a), the white domain implies $g^{(3)}(0)>1$, and contour curves denote the mean photon number.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H = H 0 + H I + H D ,
d d t ρ = i [ H , ρ ] + L κ ρ + L atom ( 1 ) ρ + L atom ( 2 ) ρ
L κ ρ = κ ( 2 a ρ a a a ρ ρ a a ) ,   and
L atom ( i ) ρ = γ g m ( 2 σ m g ( i ) ρ σ g m ( i ) σ g m ( i ) σ m g ( i ) ρ ρ σ g m ( i ) σ m g ( i ) ) + γ m e ( 2 σ e m ( i ) ρ σ m e ( i ) σ m e ( i ) σ e m ( i ) ρ ρ σ m e ( i ) σ e m ( i ) )
Ψ 0 ( 1 ) = Ω c 2 g | G G , 1 + | E G , 0 Ψ 1 ± ( 1 ) = ± | M G + , 0 + | E G + , 0 Ψ 2 ± ( 1 ) = 2 g Ω c | G G , 1 ± 2 g 2 + Ω c 2 Ω c | M G , 0 + | E G , 0
Ψ 0 + ( 2 ) = Ω c 2 2 g 2 | G G , 2 + 2 Ω c g | E G , 1 + | E E , 0 Ψ 0 ( 2 ) = g 2 Ω c 2 2 g 2 | G G , 2 + 2 Ω c g | E G , 1 + | M M , 0 Ψ 0 ( 2 ) = g Ω c | M G + , 1 + | E M , 0 Ψ 1 ± ( 2 ) = Ω c g | M G + , 1 g 2 + Ω c 2 g | E G + , 1 + | E M , 0 Ψ 2 ± ( 2 ) = γ + β 3 2 Ω c 2 | G G , 2 ± α β ( γ + β ) 12 g Ω c 2 | M G , 1 γ 6 g 2 + β 6 2 g Ω c | E G , 1 ± α β 2 Ω c | E M + , 0 + γ + 6 Ω c 2 β 6 Ω c 2 | M M , 0 + | E E , 0 Ψ 3 ± ( 2 ) = γ + β 3 2 Ω c 2 | G G , 2 ± α + β ( γ + β ) 12 g Ω c 2 | M G , 1 + γ + 6 g 2 + β 6 2 g Ω c | E G , 1 ± α + β 2 Ω c | E M + , 0 + γ + 6 Ω c 2 + β 6 Ω c 2 | M M , 0 + | E E , 0
Ω c = Δ = ± 2 g / 2 ,

Metrics