Abstract

We demonstrate an ultra-compact (8 mm-long) green orbital Poincaré Pr3+:LiYF4 (YLF) laser, in which the intracavity lasing modes are represented as eigenmodes on an equivalent orbital Poincaré sphere (eOPS). This is achieved through the simple application of an ‘optical-needle’ pumping geometry in conjunction with off-axis laser mode-manipulation. Optical vortices that are produced and mapped on north and south poles of the eOPS exhibit a maximum output power of 304 mW with a pump-to-laser-output slope efficiency of 12%. In addition, higher-order structured modes, including Ince Gaussian (IG), helical IG (HIG), Hermite-Laguerre Gaussian (HLG) and vortex lattices, can be directly generated from the laser cavity.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The Poincaré sphere has traditionally been used as a means of visualizing polarized states of light. While this still holds true today, its application has evolved to include visualization of different states of light, including light which possesses orbital angular momentum (OAM). Here, orbital Poincaré (OP) modes are represented on an equivalent orbital Poincaré sphere (eOPS). Characteristic of modes of light which carry OAM is that they possess topological charge (ℓ), which is in itself, a representation of the helicity (direction and order of rotation) of the mode. In the context of an eOPS, the north and south poles of an eOPS represent OAM modes with equivalent ℓ value, but opposite helicity. Similar to a polarization Poincaré sphere, all points on the eOPS can be represented as a superposition of the two poles.

A particular subset of OP modes are Laguerre-Gaussian (LG) modes. These modes poses topological charge, carry orbital angular momentum (OAM) and have an annular spatial intensity profile. These modes are commonly referred to as optical vortices and have been the subject of intense study in recent years [1,2]. They have given rise to numerous, novel applications such as high-security quantum/optical telecommunications [35], fluorescence microscope imaging systems with high spatial resolution [6], optical tweezers with the freedom of orbital motion [7,8], nano/micro-fabrication of helical structures [9], and optical vortex laser- induced forward-mass-transfer (LIFT) [10].

Direct generation of OP modes from laser systems has been demonstrated by utilizing a variety of cavity configurations [1115]. Many of these laser designs are based on solid-state lasers and fiber lasers which operate in the near-infrared (NIR) wavelength region. While some applications require the use of NIR wavelengths, many require the use of wavelengths in the visible region, and in particular the green region, for applications in materials science and biomedical technologies [1618]. As such, there is a particular interest in producing laser sources which can generate OP modes and fill this so-called ‘green gap’. Intracavity frequency-doubling of NIR lasers is a technique which has been demonstrated for the generation of optical vortex modes in the green wavelength region, however the output modes are of low quality and are frequently comprised of the coherent superimposition of several LG modes, which is undesirable [19]. Also, these modes often exhibit bottle-beam characteristics wherein the near- and far-field properties are different [20].

Pr3+ doped solid-state laser materials are highly effective at generating laser wavelengths in the visible wavelength range. They exhibit strong absorption and emission in the visible wavelength region, and they have been used in the development of GaN diode-pumped lasers operating in the green (523 nm), orange (607 nm), red (640 nm), and deep-red (720 nm) ranges [2123]. Recently, we demonstrated a diode-pumped, red (640 nm) Pr3+:LiYF4 (Pr:YLF) orbital Poincaré laser; this was achieved by using an off-axis pumping geometry in conjunction with intracavity mode radii larger than the pump spot radius [19].

In this paper, we demonstrate for the first time (to the best of our knowledge), an ultra-compact diode-pumped, optical Poincaré Pr3+:LiYF4 (Pr:YLF) laser operating in the green wavelength range (523 nm) by employing an entirely new pumping configuration (which is herein termed the ‘off-axis optical needle pumping geometry’). The system enables the selective generation of all eigenstates mapped on the eOPS by simply adjusting the position of the laser output coupler. Additionally, it also allows the generation of other high-order structured modes, including HIG and vortex lattices modes [24].

2. Experimental setup

A schematic diagram of our optical Poincaré laser source is shown in Fig. 1. A 5 mm-long, a-cut Pr:YLF crystal with a 0.5 at% doping and an aperture of 3×3 mm2 was used as the laser material. The crystal was wrapped with indium foil and it was mounted inside a copper holder, and its temperature was maintained at 12 °C using a water-chiller. The crystal had its input facet coated anti-reflecting for 442 nm and high-reflecting (R=99.3%) for 523 nm; and its output facet was coated anti-reflecting for 523 nm.

 figure: Fig. 1.

Fig. 1. Experimental setup of the green Pr:YLF orbital Poincaré laser. λ/2: half-wave plate; PBS: polarizing beam splitter; CL: cylindrical lens; L1: focusing lens; OC: output coupler; L2: collimating lens; WS: wavelength separator; Dump: pump beam dump; CCD: CCD beam profiler. Inset (a): spatial profile of the laser diode output. Inset (b): lasing spectra of pump and laser output.

Download Full Size | PPT Slide | PDF

Two InGaN laser diodes (NDB7K75) emitting in the blue were used as pump sources for the laser, and their wavelength was tuned to be 442 nm, thereby maximizing the absorption of the crystal (absorption coefficient was then measured to be 1.5 cm−1).

As shown in the inset (a), the diodes operated at multi transverse-modes, and they possessed a rectangular-shaped spatial form with astigmatism along the x and y-axes. Thus, their outputs were combined with the use of a half-wave plate and a polarizing beam splitter (PBS), and they were shaped to be a quasi-circular spot by using two aspheric lenses (L1 and L2 with a focal length of 4.5 mm) and a cylindrical lens (CL) with a focal length of 250 mm. The combined laser diode pump beam was focused onto the input facet of the laser crystal with the use of two plano-convex lenses (L3 (f=25 mm) and L4 (f=35 mm)). This combination of lenses has strong spherical aberration and produced an axially-localized ‘hotspot’ containing a significant fraction of the optical energy. The pump beam shape in the presence of spherical aberration is shown in Fig. 2; we refer to this shape of beam as an ‘optical needle’ [25]. The line profiles of pump beams along the horizontal and vertical axes at the front surface of the laser crystal are shown in the insets of Fig. 2. Notably, when both lenses are facing in the same direction, a small elliptical pump spot (major and minor radii of 40 µm and 31 µm respectively) is produced with a long confocal length (3.2 mm) (an optical needle).

 figure: Fig. 2.

Fig. 2. Pump beam shaping using two plano-convex lenses of focal length 25 mm (L3) and 35 mm (L4) with: (a) lenses facing in the same direction; and (b) lenses facing opposite to one another.

Download Full Size | PPT Slide | PDF

Pr3+:LiYF4 exhibits a relatively lower emission cross-section for 523 nm (green) line than those for 604 nm (orange) and 670 nm (red) lines. Thus, the green orbital Poincare sphere modes generation requires this ‘optical needle’ pump beam. The optical needle inherently possesses multiple diffraction rings, which could not be observed owing to the limited dynamic range of CCD camera (Fig. 2(a)).

When both lenses are facing opposite one another, a larger pump spot is produced (major and minor radii of 53 µm and 45 µm respectively) with a shorter confocal length (∼2 mm) (Fig. 2(b)). Unlike our previous 640 nm work [24], this oppositely-faced configuration impacted the spatial overlap between intracavity vortex and pump modes, thereby preventing the OP mode operation at 523 nm. Also, this geometry allowed the system to operate at a mixed mode. Also, when L4 with a shorter focal length was used, a strongly localized ‘hotspot’ with a most fraction of the optical energy and a short confocal length then induced the crystal damage.

It is worth noting that when the lens L3 was further reversed in the setup (a), the system did not work well owing to too strong spherical aberration. Further, vortex mode operation might be obtained by appropriately extending the cavity and expanding the pump spot, so as to maintain the spatial overlap between the pump and vortex modes, however, the low emission cross section for 523 nm line then strongly prevents the efficient laser operation. In fact, we have never obtained the vortex mode operation by utilizing the extended cavity.

A high-reflecting concave mirror with reflectivity of 98.3% at 523 nm and a radius of curvature of 150 mm was used as the output coupler (OC). The length of the laser cavity length was fixed at 8 mm. With this cavity and pumping design, a ‘tightly pumped’ condition was satisfied, in which an intracavity mode radius (∼61 µm estimated by using LASCAD software) is noticeably larger than the pump spot with major and minor radii (wpx and wpy). This pumping configuration is here termed an ‘optical needle pumping geometry’. It should be noted that we were unable to generate vortex mode emission from this laser cavity when using the oppositely-faced plano-convex lens combination.

The OC was mounted on a three-axis translation stage to provide transverse (off-axial) displacements along the x- and y-axes with steps as small as Δxy=0.5 µm, thus enabling us to induce conditions of off-axis pumping (wherein the cavity mode is off-axis relative to that of the pump beam). The residual pump beam passing through the laser cavity was separated from the laser emission by a wavelength separator and then beam-dumped. The laser output was analyzed using a conventional CCD camera laser beam profiler. It was observed that when pumping on-axis (no transverse displacement of the OC), the laser produced a fundamental, Gaussian mode output with a wavelength of 523 nm (the wavelength spectrum of the laser is shown in the inset (b) of Fig. 1).

3. Experimental results and discussion

Off-axis (x or y direction) displacement of the OC was used to force the laser to generate HG1,0 and HG0,1 modes. Using combinations of x and y displacements of the OC enabled the production of LG0,±1 (=1/√2×(HG1,0±iHG0,1)) modes, which were comprised of a coherent superposition of both HG1,0 and HG0,1 modes with a relative phase difference of ±π/2.

It was observed that the laser system produced HG modes inclined 45° and 135° (i.e., HG45=1/√2×[HG1,0+HG0,1] and HG135=1/√2×[HG1,0-HG0,1]) when the OC was displaced Δx=±54 µm and Δy=±42 µm. The laser was also found to produce a first order LG0,1 (or LG0,−1) mode with an annular spatial form for OC displacements of Δx=±36 µm and Δy=±49 µm. The range of modes that could be generated from the laser cavity for various displacements of the OC are summarized in Fig. 3(a). The presence of OAM within these modes was examined with the use of a shear interferometer [26] wherein a pair of upward and downward (or downward and upward) Y-shaped fringes were observed (see Fig. 4). The maximum output power which was generated from an LG mode with topological charge ℓ=±1 (which we consider the lowest-order vortex mode) was measured to be 304 mW, with a slope efficiency of 12% (maximum absorbed power was 4 W) (Fig. 3(b)). The highest power generated from the laser with a Gaussian output profile was 480 mW. It should be noted that these values (output power and slope efficiency) are comparatively lower than that generated at 640 nm from an LG mode, obtained in our previous work; this can be attributed to the lower emission cross-section of Pr:YLF at 523 nm [27].

 figure: Fig. 3.

Fig. 3. Laser mode characteristics showing: (a) Mode-map of different modes generated from the laser for combinations of displacement of the OC in x- and y-directions (off-axis pumping position); and (b) power scaling of the green laser emission with both Gaussian and vortex output mode profiles.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Handedness of vortex modes detected by shear interferometry showing: (a) a vortex mode with +1 topological charge; (b) a vortex mode with −1 topological charge; and (c) a vortex dipole with topological charges −1 and +1 (the spatial profiles are shown inset).

Download Full Size | PPT Slide | PDF

The off-axis displacement of the OC also facilitated control of the relative phase difference between LG0,+1 and LG0,−1 modes, thereby resulting in the direct production of a variety of OP modes from the laser cavity. In general, OP modes, SG1,1(θ, ϕ), formed from a coherent superposition of LG0+1 and LG0−1 modes, can be written as

$${S{G_{1,1}}(\theta ,\varphi ) = LG_0^{ + 1}\textrm{cos}({\theta /\textrm{2}} ){e^{ - i\varphi /\textrm{2}}} + LG_0^{ - 1}\textrm{sin}({\theta /\textrm{2}} ){e^{i\varphi /\textrm{2}}}}$$
where θ and ϕ are the azimuthal and axial angles associated with geometric phase, respectively [2830]. The LG modes with ℓ=±1 are plotted at north and south poles on the eOPS, and the HG modes are mapped on the equatorial plane of the eOPS. The HLG modes are represented on the meridian plane of the eOPS (Figs. 5(a) and (b)). It is should be noted that our laser system was capable of producing the full spectrum of spatial modes represented on the eOPS by providing the appropriate off-axis displacements (Δx, Δy) as shown in Figs. 5(c) and (d). For completeness, theoretical modeling and experimental generation of other composite modes from this laser cavity and pumping scheme are summarized in the Appendix.

 figure: Fig. 5.

Fig. 5. Compilation of eigen-structured modes generated from the laser, mapped onto eOPSs: (a) theoretical and (c) experimental structured modes represented on eOPSs along the principal axes; (b) theoretical and (d) experimental structured modes represented on eOPSs along a single, complete geometric path.

Download Full Size | PPT Slide | PDF

Given the simplicity and robustness of this laser cavity and pumping design, we anticipate that expansion into the ultraviolet wavelength range can be readily achieved with the application of intracavity frequency doubling.

4. Conclusion

We have demonstrated an ultra-compact, green orbital Poincaré laser based on a diode-pumped Pr3+:YLF laser with an off-axis optical needle pumping geometry. This system enables the generation of versatile structured modes, such as HG, LG and HLG modes, all of which can be represented on a first-order equivalent orbital Poincaré sphere. Given the diversity of modes and the simplicity by which they are generated from the laser design, we anticipate that such green orbital Poincaré lasers have the potential to revolutionize applications in advanced materials sciences and biomedical technologies.

Appendix

In addition to the HG, LG and HLG modes detailed in the above work, we have generated a range of higher order, composite modes, which can be represented by the coherent superposition of higher order HG modes, from the laser cavity. The generated structured modes are numerically simulated by employing Eqs. 2 and 3.

$${SG = \sum\limits_{m,n} {{a_{m,n}}\textrm{H}{\textrm{G}_{m,n}}} ;\;\;\;\;\;\;\;\;\textrm{ }\sum\limits_{m,n} {{{|{{a_{mn}}} |}^\textrm{2}} = \textrm{1}}},$$
$${\textrm{H}}{{\textrm{G}}_{m,n}}(x,y) = {{\textrm{1}} \over {w\sqrt {{{\textrm{2}}^{m + n - {\textrm{1}}}}\pi m!n!} }}{e^{ - {{{r^{\textrm{2}}}} \over {{w^{\textrm{2}}}}}}}{H_m}\left( {{{\sqrt {\textrm{2}} x} \over w}} \right){H_n}\left( {{{\sqrt {\textrm{2}} y} \over w}} \right)$$

Here, Hm(.) and Hn(.) are Hermite polynomials, and m and n are the integers along the respective x and y coordinates. The Gaussian spot size w used in the numerical analysis is normalized to be 1. The mode number N of the eigenmodes is given by N = m + n and N=2p+|| for respective HG and LG modes. The composite modes, formed of eigenmodes with the same mode number N, (here termed a hybrid eigenmode) undergo stable propagation without any spatial transformation in the laser cavity.

The hybrid eigenmodes generated from the system are presented in Fig. 6. As reported in our previous publications [24], the laser system also allowed us to produce green vortex modes with square shape, vortex lattices, helical IG, HLG, and petal modes formed by superposition of vortex modes with opposite handedness. Optical vortex lattices with four phase singularities were generated from the laser cavity. Additionally, higher-order vortex modes such as petal modes can potentially be generated by employing a dove prism-embedded Mach-Zehnder interferometer [31].

 figure: Fig. 6.

Fig. 6. Compilation of experimentally-generated and corresponding, theoretically-modeled, higher order eigen-structured modes from the laser cavity. The output power of higher-order modes is ranged within 11 - 110 mW at an absorbed pump power of 4 W.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. Experimentally generated higher-order non-eigen-structured modes generated directly from the laser cavity. The output powers of hybrid modes are ranged within 15–30 mW at the pump power of 4 W.

Download Full Size | PPT Slide | PDF

 figure: Fig. 8.

Fig. 8. Propagation dynamics of the focused non-eigenmode, HG0,1+iHG2,0 showing: (a) Transverse shape of the HG0,1+iHG2,0 mode as a function of propagation distance; and (b) the Gouy phases of HG modes under propagation. The Gouy phase of HG0,1 and HG2,0 are ϕG1 and ϕG2 respectively and the Gouy phase difference between these two eigenmodes is δϕG.

Download Full Size | PPT Slide | PDF

Another group of hybrid modes, formed of different mode-number intracavity HG modes, are depicted in Fig. 7. For instance, the hybrid mode formed of HG0,1+iHG2,0, has a perfect vortex lattice with 2 phase singularities at the focal plane, however, this is transformed into a unique spatial form with two openings in the far-field, owing to a Gouy phase difference (δϕG) between the two constituent HG modes (see Fig. 8). While these types of modes exhibit such propagation dynamics, they still have application in fields of nano/micro fabrication and optical manipulation. These hybrid modes, formed by the coherent superposition of HG modes, are twisted by the relative phases among HG modes. The output power of these hybrid modes decreasing with increasing their order. The powers of hybrid modes were ranged within 15∼30 mW at an absorbed pump power of 4 W.

Funding

Core Research for Evolutional Science and Technology (JPMJCR1903); Japan Society for the Promotion of Science (P19352); Japan Society for the Promotion of Science (JP16H06507, JP17K19070, JP18H03884).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]  

2. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017). [CrossRef]  

3. S. R. Park, L. Cattell, J. M. Nichols, A. Watnik, T. Doster, and G. K. Rohde, “De-multiplexing vortex modes in optical communications using transport-based pattern recognition,” Opt. Express 26(4), 4004–4022 (2018). [CrossRef]  

4. Y. Zhao, J. Xu, A. Wang, W. Lv, L. Zhu, S. Li, and J. Wang, “Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link,” Opt. Express 25(23), 28743–28751 (2017). [CrossRef]  

5. D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019). [CrossRef]  

6. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fujii, “Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Opt. Express 11(24), 3271–3276 (2003). [CrossRef]  

7. G. D. Bruce, P. Rodríguez-Sevilla, and K. Dholakia, “Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles,” Adv. Phys. X 6(1), 1838322 (2021). [CrossRef]  

8. B. Ada-Ioana and J. Glückstad, “Strategies for optical trapping in biological samples: aiming at microroboticsurgeons,” Laser Photon. Rev. 13(4), 1800227 (2019). [CrossRef]  

9. T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020). [CrossRef]  

10. R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, and T. Omatsu, “Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex,” Opt. Express 27(26), 38019–38027 (2019). [CrossRef]  

11. T. Omatsu, K. Miyamoto, and A. J. Lee, “Wavelength-versatile optical vortex lasers,” J. Opt. 19(12), 123002 (2017). [CrossRef]  

12. Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018). [CrossRef]  

13. W. R. Kerridge-Johns and M. J. Damzen, “Vortex laser from anti-resonant ring coupled cavities,” Opt. Express 26(25), 32839–32846 (2018). [CrossRef]  

14. X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018). [CrossRef]  

15. Y. F. Chen, H. T. Ke, Y. C. Tseng, M. X. Hsieh, J. C. Tung, Y. H. Hsieh, H. C. Liang, and K. F. Huang, “High-power structured laser modes: direct generation of a vortex array,” Opt. Lett. 45(14), 4096–4099 (2020). [CrossRef]  

16. Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013). [CrossRef]  

17. S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012). [CrossRef]  

18. X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017). [CrossRef]  

19. A. S. Rao, K. Miamoto, and T. Omatsu, “Ultraviolet intracavity frequency-doubled Pr3+: LiYF4 orbital Poincaré laser,” Opt. Express 28(25), 37397–37405 (2020). [CrossRef]  

20. A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, “An intracavity, frequency-doubled self-Raman vortex laser,” Opt. Express 22(5), 5400–5409 (2014). [CrossRef]  

21. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+: LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014). [CrossRef]  

22. Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, and F. Stareki, “Diode-pumped Pr 3+: LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013). [CrossRef]  

23. J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. 25(9), 5638–5645 (1982). [CrossRef]  

24. A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021). [CrossRef]  

25. A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana 90(6), 77 (2018). [CrossRef]  

26. D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008). [CrossRef]  

27. Y. Ma, A. Vallés, J. C. Tung, Y. F. Chen, K. Miyamoto, and T. Omatsu, “Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+: YLF laser,” Opt. Express 27(13), 18190–18200 (2019). [CrossRef]  

28. M. R. Dennis and M. A. Alonso, “Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams Philos,” Phil. Trans. R. Soc. A. 375(2087), 20150441 (2017). [CrossRef]  

29. R. Gutiérrez-Cuevas, M. R. Dennis, and M. A. Alonso, “Generalized Gaussian beams in terms of Jones vectors,” J. Optics 21(8), 084001 (2019). [CrossRef]  

30. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24(7), 430–432 (1999). [CrossRef]  

31. B. Tian, J. Yu, and B. Zhang, “A method for generating LG0l vortex beams with tunable topological charges based on tube lasers,” Opt. Commun. 491, 126939 (2021). [CrossRef]  

References

  • View by:

  1. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
    [Crossref]
  3. S. R. Park, L. Cattell, J. M. Nichols, A. Watnik, T. Doster, and G. K. Rohde, “De-multiplexing vortex modes in optical communications using transport-based pattern recognition,” Opt. Express 26(4), 4004–4022 (2018).
    [Crossref]
  4. Y. Zhao, J. Xu, A. Wang, W. Lv, L. Zhu, S. Li, and J. Wang, “Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link,” Opt. Express 25(23), 28743–28751 (2017).
    [Crossref]
  5. D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
    [Crossref]
  6. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fujii, “Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Opt. Express 11(24), 3271–3276 (2003).
    [Crossref]
  7. G. D. Bruce, P. Rodríguez-Sevilla, and K. Dholakia, “Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles,” Adv. Phys. X 6(1), 1838322 (2021).
    [Crossref]
  8. B. Ada-Ioana and J. Glückstad, “Strategies for optical trapping in biological samples: aiming at microroboticsurgeons,” Laser Photon. Rev. 13(4), 1800227 (2019).
    [Crossref]
  9. T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
    [Crossref]
  10. R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, and T. Omatsu, “Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex,” Opt. Express 27(26), 38019–38027 (2019).
    [Crossref]
  11. T. Omatsu, K. Miyamoto, and A. J. Lee, “Wavelength-versatile optical vortex lasers,” J. Opt. 19(12), 123002 (2017).
    [Crossref]
  12. Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
    [Crossref]
  13. W. R. Kerridge-Johns and M. J. Damzen, “Vortex laser from anti-resonant ring coupled cavities,” Opt. Express 26(25), 32839–32846 (2018).
    [Crossref]
  14. X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
    [Crossref]
  15. Y. F. Chen, H. T. Ke, Y. C. Tseng, M. X. Hsieh, J. C. Tung, Y. H. Hsieh, H. C. Liang, and K. F. Huang, “High-power structured laser modes: direct generation of a vortex array,” Opt. Lett. 45(14), 4096–4099 (2020).
    [Crossref]
  16. Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013).
    [Crossref]
  17. S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
    [Crossref]
  18. X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
    [Crossref]
  19. A. S. Rao, K. Miamoto, and T. Omatsu, “Ultraviolet intracavity frequency-doubled Pr3+: LiYF4 orbital Poincaré laser,” Opt. Express 28(25), 37397–37405 (2020).
    [Crossref]
  20. A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, “An intracavity, frequency-doubled self-Raman vortex laser,” Opt. Express 22(5), 5400–5409 (2014).
    [Crossref]
  21. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+: LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
    [Crossref]
  22. Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, and F. Stareki, “Diode-pumped Pr 3+: LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
    [Crossref]
  23. J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. 25(9), 5638–5645 (1982).
    [Crossref]
  24. A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021).
    [Crossref]
  25. A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana 90(6), 77 (2018).
    [Crossref]
  26. D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008).
    [Crossref]
  27. Y. Ma, A. Vallés, J. C. Tung, Y. F. Chen, K. Miyamoto, and T. Omatsu, “Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+: YLF laser,” Opt. Express 27(13), 18190–18200 (2019).
    [Crossref]
  28. M. R. Dennis and M. A. Alonso, “Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams Philos,” Phil. Trans. R. Soc. A. 375(2087), 20150441 (2017).
    [Crossref]
  29. R. Gutiérrez-Cuevas, M. R. Dennis, and M. A. Alonso, “Generalized Gaussian beams in terms of Jones vectors,” J. Optics 21(8), 084001 (2019).
    [Crossref]
  30. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24(7), 430–432 (1999).
    [Crossref]
  31. B. Tian, J. Yu, and B. Zhang, “A method for generating LG0l vortex beams with tunable topological charges based on tube lasers,” Opt. Commun. 491, 126939 (2021).
    [Crossref]

2021 (3)

G. D. Bruce, P. Rodríguez-Sevilla, and K. Dholakia, “Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles,” Adv. Phys. X 6(1), 1838322 (2021).
[Crossref]

A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021).
[Crossref]

B. Tian, J. Yu, and B. Zhang, “A method for generating LG0l vortex beams with tunable topological charges based on tube lasers,” Opt. Commun. 491, 126939 (2021).
[Crossref]

2020 (3)

2019 (5)

R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, and T. Omatsu, “Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex,” Opt. Express 27(26), 38019–38027 (2019).
[Crossref]

B. Ada-Ioana and J. Glückstad, “Strategies for optical trapping in biological samples: aiming at microroboticsurgeons,” Laser Photon. Rev. 13(4), 1800227 (2019).
[Crossref]

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Y. Ma, A. Vallés, J. C. Tung, Y. F. Chen, K. Miyamoto, and T. Omatsu, “Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+: YLF laser,” Opt. Express 27(13), 18190–18200 (2019).
[Crossref]

R. Gutiérrez-Cuevas, M. R. Dennis, and M. A. Alonso, “Generalized Gaussian beams in terms of Jones vectors,” J. Optics 21(8), 084001 (2019).
[Crossref]

2018 (5)

A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana 90(6), 77 (2018).
[Crossref]

S. R. Park, L. Cattell, J. M. Nichols, A. Watnik, T. Doster, and G. K. Rohde, “De-multiplexing vortex modes in optical communications using transport-based pattern recognition,” Opt. Express 26(4), 4004–4022 (2018).
[Crossref]

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Vortex laser from anti-resonant ring coupled cavities,” Opt. Express 26(25), 32839–32846 (2018).
[Crossref]

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
[Crossref]

2017 (5)

2014 (2)

2013 (2)

Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, and F. Stareki, “Diode-pumped Pr 3+: LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013).
[Crossref]

2012 (1)

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

2008 (1)

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008).
[Crossref]

2003 (1)

1999 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

1982 (1)

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. 25(9), 5638–5645 (1982).
[Crossref]

Adachi, M.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Ada-Ioana, B.

B. Ada-Ioana and J. Glückstad, “Strategies for optical trapping in biological samples: aiming at microroboticsurgeons,” Laser Photon. Rev. 13(4), 1800227 (2019).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Alonso, M. A.

R. Gutiérrez-Cuevas, M. R. Dennis, and M. A. Alonso, “Generalized Gaussian beams in terms of Jones vectors,” J. Optics 21(8), 084001 (2019).
[Crossref]

M. R. Dennis and M. A. Alonso, “Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams Philos,” Phil. Trans. R. Soc. A. 375(2087), 20150441 (2017).
[Crossref]

Arita, Y.

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

Bacco, D.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Bruce, G. D.

G. D. Bruce, P. Rodríguez-Sevilla, and K. Dholakia, “Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles,” Adv. Phys. X 6(1), 1838322 (2021).
[Crossref]

Bu, Y.

Cai, Z.

Cattell, L.

Chen, Y. F.

Cong, C.

Courtial, J.

Cozzolino, D.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Da Lio, B.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Dalgaard, K.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Damzen, M. J.

Dennis, M. R.

R. Gutiérrez-Cuevas, M. R. Dennis, and M. A. Alonso, “Generalized Gaussian beams in terms of Jones vectors,” J. Optics 21(8), 084001 (2019).
[Crossref]

M. R. Dennis and M. A. Alonso, “Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams Philos,” Phil. Trans. R. Soc. A. 375(2087), 20150441 (2017).
[Crossref]

Dholakia, K.

G. D. Bruce, P. Rodríguez-Sevilla, and K. Dholakia, “Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles,” Adv. Phys. X 6(1), 1838322 (2021).
[Crossref]

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

Ding, Y.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Doster, T.

Enya, Y.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Fan, D.

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

Fang, Z.

Fujii, M.

Galili, M.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Gan, Y.

Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013).
[Crossref]

Ghai, D. P.

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008).
[Crossref]

Glückstad, J.

B. Ada-Ioana and J. Glückstad, “Strategies for optical trapping in biological samples: aiming at microroboticsurgeons,” Laser Photon. Rev. 13(4), 1800227 (2019).
[Crossref]

Gutiérrez-Cuevas, R.

R. Gutiérrez-Cuevas, M. R. Dennis, and M. A. Alonso, “Generalized Gaussian beams in terms of Jones vectors,” J. Optics 21(8), 084001 (2019).
[Crossref]

Hashemi, M.

A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana 90(6), 77 (2018).
[Crossref]

Hegarty, J.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. 25(9), 5638–5645 (1982).
[Crossref]

Hsieh, M. X.

Hsieh, Y. H.

Hu, L.

Huang, K. F.

Huang, S.

Huber, D. L.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. 25(9), 5638–5645 (1982).
[Crossref]

Huber, G.

Iketaki, Y.

Ingerslev, K.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Iwata, M.

Jia, B.

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
[Crossref]

Kaneko, A.

Kawaguchi, H.

Kawano, S.

Ke, H. T.

Kerridge-Johns, W. R.

Khonina, S. N.

A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana 90(6), 77 (2018).
[Crossref]

Kränkel, C.

Kristensen, P.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Kumano, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Kyono, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Lee, A. J.

T. Omatsu, K. Miyamoto, and A. J. Lee, “Wavelength-versatile optical vortex lasers,” J. Opt. 19(12), 123002 (2017).
[Crossref]

A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, “An intracavity, frequency-doubled self-Raman vortex laser,” Opt. Express 22(5), 5400–5409 (2014).
[Crossref]

Li, S.

Li, T.

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
[Crossref]

Liang, H. C.

Liang, Y.

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
[Crossref]

Litchinitser, N. M.

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

Liu, R.

Liu, X.

Liu, Z.

Lu, Y.

Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013).
[Crossref]

Luo, Z.

Lv, W.

Ma, J.

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

Ma, Y.

Marzahl, D. T.

Masuda, K.

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

Meng, Z.

Metz, P. W.

Miamoto, K.

Miike, T.

A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021).
[Crossref]

Miyamoto, K.

A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021).
[Crossref]

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, and T. Omatsu, “Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex,” Opt. Express 27(26), 38019–38027 (2019).
[Crossref]

Y. Ma, A. Vallés, J. C. Tung, Y. F. Chen, K. Miyamoto, and T. Omatsu, “Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+: YLF laser,” Opt. Express 27(13), 18190–18200 (2019).
[Crossref]

T. Omatsu, K. Miyamoto, and A. J. Lee, “Wavelength-versatile optical vortex lasers,” J. Opt. 19(12), 123002 (2017).
[Crossref]

Moglia, F.

Müller, S.

Nagura, R.

Nakamura, R.

Nichols, J. M.

Nie, Z.

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
[Crossref]

Omatsu, T.

A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021).
[Crossref]

A. S. Rao, K. Miamoto, and T. Omatsu, “Ultraviolet intracavity frequency-doubled Pr3+: LiYF4 orbital Poincaré laser,” Opt. Express 28(25), 37397–37405 (2020).
[Crossref]

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, and T. Omatsu, “Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex,” Opt. Express 27(26), 38019–38027 (2019).
[Crossref]

Y. Ma, A. Vallés, J. C. Tung, Y. F. Chen, K. Miyamoto, and T. Omatsu, “Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+: YLF laser,” Opt. Express 27(13), 18190–18200 (2019).
[Crossref]

T. Omatsu, K. Miyamoto, and A. J. Lee, “Wavelength-versatile optical vortex lasers,” J. Opt. 19(12), 123002 (2017).
[Crossref]

A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, “An intracavity, frequency-doubled self-Raman vortex laser,” Opt. Express 22(5), 5400–5409 (2014).
[Crossref]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fujii, “Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Opt. Express 11(24), 3271–3276 (2003).
[Crossref]

Oxenløwe, L. K.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Padgett, M. J.

Park, S. R.

Pask, H. M.

Qian, L.

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

Qiao, Z.

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

Qiu, Z. J.

Ramachandran, S.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Rao, A. S.

A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021).
[Crossref]

A. S. Rao, K. Miamoto, and T. Omatsu, “Ultraviolet intracavity frequency-doubled Pr3+: LiYF4 orbital Poincaré laser,” Opt. Express 28(25), 37397–37405 (2020).
[Crossref]

Reddy, A. N. K.

A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana 90(6), 77 (2018).
[Crossref]

Reichert, F.

Rodríguez-Sevilla, P.

G. D. Bruce, P. Rodríguez-Sevilla, and K. Dholakia, “Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles,” Adv. Phys. X 6(1), 1838322 (2021).
[Crossref]

Rohde, G. K.

Rottwitt, K.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Saga, N.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Sakai, M.

Senthilkumaran, P.

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008).
[Crossref]

Sirohi, R. S.

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008).
[Crossref]

Spreeuw, R.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Stareki, F.

Sumitomo, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Sumiyoshi, K.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Takagi, S.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Tian, B.

B. Tian, J. Yu, and B. Zhang, “A method for generating LG0l vortex beams with tunable topological charges based on tube lasers,” Opt. Commun. 491, 126939 (2021).
[Crossref]

Tian, P.

Tokuyama, S.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Toyoda, K.

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, and T. Omatsu, “Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex,” Opt. Express 27(26), 38019–38027 (2019).
[Crossref]

Tseng, Y. C.

Tung, J. C.

Vallés, A.

Vyas, S.

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008).
[Crossref]

Wang, A.

Wang, J.

Wang, X.

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
[Crossref]

Watanabe, T.

Watnik, A.

Woerdman, J.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wu, Y.

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

Xie, G.

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

Xu, B.

Xu, C. Q.

Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013).
[Crossref]

Xu, H.

Xu, J.

Xu, Q.

Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013).
[Crossref]

Yamamoto, K.

Yamanaka, Y.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Ye, C.

Yen, W. M.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. 25(9), 5638–5645 (1982).
[Crossref]

Yi, S.

Yoshizumi, Y.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

Yu, J.

B. Tian, J. Yu, and B. Zhang, “A method for generating LG0l vortex beams with tunable topological charges based on tube lasers,” Opt. Commun. 491, 126939 (2021).
[Crossref]

Yuan, P.

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

Zeng, C.

Zhang, B.

B. Tian, J. Yu, and B. Zhang, “A method for generating LG0l vortex beams with tunable topological charges based on tube lasers,” Opt. Commun. 491, 126939 (2021).
[Crossref]

Zhang, C.

Zhao, Y.

Zheng, L.

Zhou, X.

Zhu, L.

Adv. Phys. X (1)

G. D. Bruce, P. Rodríguez-Sevilla, and K. Dholakia, “Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles,” Adv. Phys. X 6(1), 1838322 (2021).
[Crossref]

Appl. Phys. Express (1)

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, and N. Saga, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,” Appl. Phys. Express 5(8), 082102 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, “Compact integrated green laser module for Watt-level display applications,” IEEE Photon. Technol. Lett. 25(1), 75–77 (2013).
[Crossref]

J. Nanophoton. (1)

T. Omatsu, K. Masuda, K. Miyamoto, K. Toyoda, N. M. Litchinitser, Y. Arita, and K. Dholakia, “Twisted mass transport enabled by the angular momentum of light,” J. Nanophoton. 14(01), 1 (2020).
[Crossref]

J. Opt. (2)

T. Omatsu, K. Miyamoto, and A. J. Lee, “Wavelength-versatile optical vortex lasers,” J. Opt. 19(12), 123002 (2017).
[Crossref]

A. S. Rao, T. Miike, K. Miyamoto, and T. Omatsu, “Optical vortex lattice mode generation from a diode-pumped Pr3+: LiYF4 laser,” J. Opt. 23(7), 075502 (2021).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optics (1)

R. Gutiérrez-Cuevas, M. R. Dennis, and M. A. Alonso, “Generalized Gaussian beams in terms of Jones vectors,” J. Optics 21(8), 084001 (2019).
[Crossref]

Laser Photon. Rev. (2)

Z. Qiao, G. Xie, Y. Wu, P. Yuan, J. Ma, L. Qian, and D. Fan, “Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order,” Laser Photon. Rev. 12(8), 1800019 (2018).
[Crossref]

B. Ada-Ioana and J. Glückstad, “Strategies for optical trapping in biological samples: aiming at microroboticsurgeons,” Laser Photon. Rev. 13(4), 1800227 (2019).
[Crossref]

Nanophotonics (1)

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics 7(9), 1533–1556 (2018).
[Crossref]

Opt. Commun. (1)

B. Tian, J. Yu, and B. Zhang, “A method for generating LG0l vortex beams with tunable topological charges based on tube lasers,” Opt. Commun. 491, 126939 (2021).
[Crossref]

Opt. Express (10)

Y. Ma, A. Vallés, J. C. Tung, Y. F. Chen, K. Miyamoto, and T. Omatsu, “Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+: YLF laser,” Opt. Express 27(13), 18190–18200 (2019).
[Crossref]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fujii, “Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Opt. Express 11(24), 3271–3276 (2003).
[Crossref]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref]

S. R. Park, L. Cattell, J. M. Nichols, A. Watnik, T. Doster, and G. K. Rohde, “De-multiplexing vortex modes in optical communications using transport-based pattern recognition,” Opt. Express 26(4), 4004–4022 (2018).
[Crossref]

Y. Zhao, J. Xu, A. Wang, W. Lv, L. Zhu, S. Li, and J. Wang, “Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link,” Opt. Express 25(23), 28743–28751 (2017).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Vortex laser from anti-resonant ring coupled cavities,” Opt. Express 26(25), 32839–32846 (2018).
[Crossref]

R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, and T. Omatsu, “Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex,” Opt. Express 27(26), 38019–38027 (2019).
[Crossref]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z. J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref]

A. S. Rao, K. Miamoto, and T. Omatsu, “Ultraviolet intracavity frequency-doubled Pr3+: LiYF4 orbital Poincaré laser,” Opt. Express 28(25), 37397–37405 (2020).
[Crossref]

A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, “An intracavity, frequency-doubled self-Raman vortex laser,” Opt. Express 22(5), 5400–5409 (2014).
[Crossref]

Opt. Lasers Eng. (1)

D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46(6), 419–423 (2008).
[Crossref]

Opt. Lett. (3)

Phil. Trans. R. Soc. A. (1)

M. R. Dennis and M. A. Alonso, “Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams Philos,” Phil. Trans. R. Soc. A. 375(2087), 20150441 (2017).
[Crossref]

Phys. Rev. (1)

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. 25(9), 5638–5645 (1982).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. Appl. (1)

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11(6), 064058 (2019).
[Crossref]

Pramana (1)

A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana 90(6), 77 (2018).
[Crossref]

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup of the green Pr:YLF orbital Poincaré laser. λ/2: half-wave plate; PBS: polarizing beam splitter; CL: cylindrical lens; L1: focusing lens; OC: output coupler; L2: collimating lens; WS: wavelength separator; Dump: pump beam dump; CCD: CCD beam profiler. Inset (a): spatial profile of the laser diode output. Inset (b): lasing spectra of pump and laser output.
Fig. 2.
Fig. 2. Pump beam shaping using two plano-convex lenses of focal length 25 mm (L3) and 35 mm (L4) with: (a) lenses facing in the same direction; and (b) lenses facing opposite to one another.
Fig. 3.
Fig. 3. Laser mode characteristics showing: (a) Mode-map of different modes generated from the laser for combinations of displacement of the OC in x- and y-directions (off-axis pumping position); and (b) power scaling of the green laser emission with both Gaussian and vortex output mode profiles.
Fig. 4.
Fig. 4. Handedness of vortex modes detected by shear interferometry showing: (a) a vortex mode with +1 topological charge; (b) a vortex mode with −1 topological charge; and (c) a vortex dipole with topological charges −1 and +1 (the spatial profiles are shown inset).
Fig. 5.
Fig. 5. Compilation of eigen-structured modes generated from the laser, mapped onto eOPSs: (a) theoretical and (c) experimental structured modes represented on eOPSs along the principal axes; (b) theoretical and (d) experimental structured modes represented on eOPSs along a single, complete geometric path.
Fig. 6.
Fig. 6. Compilation of experimentally-generated and corresponding, theoretically-modeled, higher order eigen-structured modes from the laser cavity. The output power of higher-order modes is ranged within 11 - 110 mW at an absorbed pump power of 4 W.
Fig. 7.
Fig. 7. Experimentally generated higher-order non-eigen-structured modes generated directly from the laser cavity. The output powers of hybrid modes are ranged within 15–30 mW at the pump power of 4 W.
Fig. 8.
Fig. 8. Propagation dynamics of the focused non-eigenmode, HG0,1+iHG2,0 showing: (a) Transverse shape of the HG0,1+iHG2,0 mode as a function of propagation distance; and (b) the Gouy phases of HG modes under propagation. The Gouy phase of HG0,1 and HG2,0 are ϕG1 and ϕG2 respectively and the Gouy phase difference between these two eigenmodes is δϕG.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S G 1 , 1 ( θ , φ ) = L G 0 + 1 cos ( θ / 2 ) e i φ / 2 + L G 0 1 sin ( θ / 2 ) e i φ / 2
S G = m , n a m , n H G m , n ;   m , n | a m n | 2 = 1 ,
H G m , n ( x , y ) = 1 w 2 m + n 1 π m ! n ! e r 2 w 2 H m ( 2 x w ) H n ( 2 y w )

Metrics