Abstract

The polarization independent and non-reciprocal absorption is particularly crucial for the realization of non-reciprocal absorption devices. Herein, we proposed and studied the absorption response of two- and three-layer anisotropic black phosphorus (BP) metamaterials by using the finite-difference time-domain (FDTD) simulation and radiation oscillator theory (ROT) analysis. It is shown that, due to unequal surface plasmon resonant modes excited in zigzag (ZZ) and armchair (AC) directions of the anisotropic BP layer, tunable polarization independent and dependent absorption can be achieved for the proposed multi-layer anisotropic BP metamaterials with AC-AC, AC-ZZ, ZZ-AC, AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations. Especially, the polarization independent absorption also can be realized for odd-layer BP nanostructures. Unlike previous reports, polarization independence only can be achieved in the even-layer BP nanostructure. Moreover, tunable non-reciprocal absorption with the extremely large non-reciprocal degree (NRD) is also found in the case of AC-ZZ and ZZ-AC configurations and AC-ZZ-φ and ZZ-AC-φ configurations. These results may open up the possibility of realizing tunable polarization independent and non-reciprocal plasmonic devices based on 2D materials.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Benefit from the advantages of high charge carrier mobility and atom-scale thickness, two-dimensional (2D) materials have attracted enormous attention in the past years [1,2]. 2D materials show strong light-matter interactions owing to the strong field confinement and low loss [3,4]. Especially, surface plasmons (SPs) have been also found in many 2D materials [57]. Based on the atomic arrangement and lattice symmetry, SPs are distinguishable for different kinds of 2D materials [6,8]. The one is the isotropic 2D materials with the isotropic optical conductivity tensor in plane [9,10], such as graphene. In recent years, SPs based on graphene have been reported [1114]. The other is the anisotropic 2D materials with anisotropic optical conductivity tensor in plane, such as black phosphorus (BP) and Rhenium disulfide [8,15,16]. Compared with the isotropic 2D material, the anisotropic 2D material has one more degree of freedom in-plane, so their properties are more plentiful, such as the linear dichroism and anisotropic plasmons [8,17,18].

BP is a typical anisotropic 2D material, which not only has pure planar anisotropy characteristics, but also shows outstanding photonic and electronic properties [18,19]. Similar to graphene and novel metal materials, BP also can support the propagation of SPs [2022]. But the atomically thin layer for BP leads to the strong quantum confinement effect [23] and large surface-to-volume ratio [24], which are unmatched by bulk materials [25,26]. In addition, unlike the graphene, the bandgap of BP is layer-dependent, with a single-layer bandgap of 2.0 eV and a multi-layer bandgap of 0.3 eV [27,28]. Thus, the advantages of BP are also attractive for the future device implementation, such as plasmonic sensors [29,30,31], perfect absorbers [15,32], optical storages [33] as well as polarization selectors [8,34]. The previous studies about anisotropic BP were focused on the strong anisotropy related applications. BP with a specific orientation of even-numbered layers can realize polarization-independent optical responses [8]. However, how to realize the polarization independent plasmonic behaviors in odd-numbered BP layers is still a challenge.

In this paper, we propose and analyze six multi-layer anisotropic BP metamaterials to realize the tunable polarization independent and non-reciprocal absorption. Firstly, the absorption and reflection spectra of AC-AC (Both BP1 and BP2 layers are AC directions in the x-axis), AC-ZZ (BP1 is AC direction in the x-axis, and BP2 is ZZ direction in the x-axis), and ZZ-AC (BP1 is ZZ direction in the x-axis, and BP2 is AC direction in the x-axis) configurations are investigated through the FDTD simulation and ROT analysis. Secondly, dependences of the polarization angle, coupling distance, and carrier density on the absorption and non-reciprocal degree in the AC-AC, AC-ZZ, and ZZ-AC configurations are clarified in detail. At last, the odd-numbered layer anisotropic BP metamaterials (AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations) are proposed to realize the polarization independent absorption.

2. Structure and theory

Figure 1(a) shows the schematic diagrams of the AC-AC, AC-ZZ, and ZZ-AC configurations for two-layer anisotropic BP metamaterials. The top and front views of the proposed two-layer BP metamaterials are shown in Figs. 1(b) and (c), respectively. Figure 1(d) depicts the schematic diagram of the AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations for the three-layer anisotropic BP metamaterials, where φ represents the counterclockwise rotation angle of AC direction for the BP3. The top and front views of the proposed three-layer BP metamaterials are plotted in Figs. 1 (e) and (f), respectively. The bottom metal is Au, and the substrate is chosen to be SiO2. The structural parameters are set as follows: h1=600 nm is the thickness of the substrate, h2=20 nm is the thickness of the Au layer, w=100 nm is the width of the BP layer, the thickness of BP layer is set as 1 nm in our paper, d is the coupling distance of the two adjacent BP layers, θ is the polarization angle of input plane wave, and px=200 nm and py=200 nm are the periods in x and y directions, respectively. The spectra of the anisotropic BP metamaterials are simulated by FDTD methods. In the simulations, the effective area is divided into uniform Yee cells with Δxyz=0.5 nm. The perfectly matched layer is set for the z direction, and the periodic boundary condition is chosen for x and y directions. The permittivities of Au and SiO2 are taken from [35]. Here, a semi-classical Drude model is introduced for demonstrating the surface conductivity of monolayer BP and expressed as [36,37]

$${\varepsilon _j} = \frac{{\textrm{i}{D_j}}}{{\pi (\omega + {\textrm{i}}\eta / \hbar )}},{D_j} = \pi {e^2}\frac{n}{{{m_j}}}$$
where, j = AC or ZZ, representing the AC or ZZ direction of BP layer, e is the elementary charge, Dj is the Drude weight, n is the carrier density of BP, ω is the angular frequency of input plane wave, η=10 meV is the BP relaxation rate, and mj is the carrier effective mass in AC or ZZ direction and can be expressed as [38,39]
$${m_{\textrm{AC}}} = \frac{{{\hbar ^2}}}{{\frac{{2{\mu ^2}}}{\mathrm{\Delta }} + \zeta }},{m_{\textrm{ZZ}}} = \frac{{{\hbar ^2}}}{{2v}}$$
where Δ=2 eV is the band gap, ζ=ћ2/(0.4m0), ν=ћ2/(1.4m0), and μ=4a/π eVm. a=0.223 nm is the scale length of BP, and m0=9.10938×10−31 kg is the standard electron rest mass [40]. Figure 1(g) shows the anisotropic conductivity of BP in the AC and ZZ directions with the carrier density n=1.2×1014 cm−2.

 figure: Fig. 1.

Fig. 1. (a) Schematic diagram of AC-AC, AC-ZZ, and ZZ-AC configurations for two-layer anisotropic BP metamaterials and their (b) top view and (c) front view. (d) Schematic diagram of AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations for three-layer anisotropic BP metamaterials and their (e) top view and (f) front view. (g) Anisotropic conductivity of BP in AC and ZZ directions as the carrier density n=1.2×1014 cm−2.

Download Full Size | PPT Slide | PDF

To describe the optical responses of the two-layer anisotropic BP metamaterials in Fig. 1(a), a ROT in frequency domain is developed as [8,41]

$$\left( {\begin{array}{cc} { - {B_{1p}}}&{{\kappa_{12p}}}\\ {{\kappa_{21p}}}&{ - {B_{2p}}} \end{array}} \right)\left( {\begin{array}{c} {{A_{1p}}}\\ {{A_{2p}}} \end{array}} \right) = \left( {\begin{array}{c} {{Q_{1p}}{E_0}{f_p}(\theta )/{m_{1p}}}\\ {{Q_{2p}}{E_0}{f_p}(\theta )/{m_{2p}}} \end{array}} \right)$$
where p stands for the x or y direction, B1p=ω2-iωγ1p-ω1p2, B2p=ω2-iωγ2p-ω2p2. Here, γ1(2)p, Q1(2)p, ω1(2)p, and m1(2)p are the loss factors, effective charges, resonance angle frequencies, and effective masses of the oscillators in the first (second) layers and directions. fx(θ)=cosθ, and fy(θ)=sinθ. E0 is the amplitude of the incident electric field. Due to the long coupling distance between the two adjacent BP layers, we assume that the coupling coefficient κ12p=κ21p≈0, the amplitudes of oscillators can be approximately calculated as
$${A_{1(2)p}} = \frac{{{Q_{1(2)p}}{E_0}{f_p}(\theta )/{m_{1(2)p}}}}{{{B_{1(2)p}}}}$$
The total polarizability is expressed as P=χeffε0E0, where χeff is the effective electric susceptibility. P also satisfies the relationship P=(Px2+Py2)1/2, where Pp=Q1pA1p+Q2pA2p. For the two-layer anisotropic BP metamaterials, χeff can be calculated as
$${\chi _{eff}} = \sqrt {{{({{Q_{1x}}{A_{1x}} + {Q_{2x}}{A_{2x}}} )}^2} + {{({{Q_{1y}}{A_{1y}} + {Q_{2y}}{A_{2y}}} )}^2}} /{\varepsilon _0}{E_0}$$
For the three-layer anisotropic BP metamaterial in Fig. 1(d), the ROT can be expressed as
$$\left( {\begin{array}{ccc} { - {B_{1p}}} & 0&0\\ 0&{ - {B_{2p}}}&0\\ 0&0&{ - {B_{3p}}} \end{array}} \right)\left( {\begin{array}{c} {{A_{1p}}}\\ {{A_{2p}}}\\ {{A_{3p}}} \end{array}} \right) = \left( {\begin{array}{c} {{Q_{1p}}{E_0}{f_p}(\theta )/{m_{1p}}}\\ {{Q_{2p}}{E_0}{f_p}(\theta )/{m_{2p}}}\\ {{Q_{3p}}{E_0}{f_p}(\theta - \varphi )/{m_{3p}}} \end{array}} \right)$$
where B3p=ω2-iωγ3p-ω3p2. γ3p Q3p, ω3p, and m3p are the loss factor, effective charge, resonance angle frequency, and effective mass of oscillators for BP3 and corresponding directions, respectively. The amplitudes of three oscillators can be approximately calculated as
$$\begin{aligned} & {{A_{1(2)p}} = \frac{{{Q_{1(2)p}}{E_0}{f_p}(\theta )/{m_{1(2)p}}}}{{{B_{1(2)p}}}}}\\ & {{A_{3p}} = \frac{{{Q_{3p}}{E_0}{f_p}(\theta - \varphi )/{m_{3p}}}}{{{B_{3p}}}}} \end{aligned}$$
The polarizability is expressed as Pp=Q1pA1p+Q2pA2p+Q3pA3p, for the three-layer anisotropic BP metamaterials, χeff can be calculated as
$${\chi _{eff\; }} = \sqrt {{{({{Q_{1x}}{A_{1x}} + {Q_{2x}}{A_{2x}} + {Q_{3x}}{A_{3x}}} )}^2} + {{({{Q_{1y}}{A_{1y}} + {Q_{2y}}{A_{2y}} + {Q_{3y}}{A_{3y}}} )}^2}} /{\varepsilon _0}{E_0}$$
Here, the reflection and absorption can be defined as R=1−Im(χeff) and A = Im(χeff) [42].

3. Results and discussions

3.1 Absorption of two-layer anisotropic BP metamaterials

The reflection and absorption spectra and their generating mechanism are studied in the AC-AC, AC-ZZ, and ZZ-AC anisotropic BP metamaterials, as depicted in Fig. 2. The red solid line in Fig. 2(a) shows an extremely strong absorption at the wavelength of 7.75 μm for the AC-AC configuration in the case of θ=0°. Electric field distributions show that SPs are strongly excited on the BP1 forming the obvious absorption peak, as shown in the inset of Fig. 2(a). The weak electric field for BP2 is caused by the infinite of BP2 along the polarization direction when θ=0°. Thus, compared with BP1, BP2 can be regarded as a quasi-dark mode in the case of θ=0°. Therefore, the parameters of ROT analysis in the case of θ=0° for the AC-AC configuration can be simplified as: ω2x=0, ω1y=ω2y=0, γ1x=γ2x, γ1y=γ2y, m1x=m2x, m1y=m2y, Q2x≈0, and Q1y=Q2y=0. Thus, χeff can be reduced as χeffQ1×2m1xcosθ/ε0B1x. From Fig. 2(a), we can find that the FDTD simulation results are well agreement with the ROT results. In Fig. 2(b), we can see that two absorption peeks appear near the wavelengths of 6.2 μm and 11.9 μm for the AC-AC configuration when θ=90°, respectively. The electric field in the inset of Fig. 2(b) shows that the two absorption peaks are caused by the first- and second-order SPs excitation on BP2. Here, BP1 can be seen as quasi-dark mode. Therefore, the parameters for ROT analysis can be expressed as: ω1x=ω2x=0, ω1y=0, γ1x=γ2x, γ1y=γ2y, m1x=m2x, m1y=m2y, Q1x=Q2x=0, Q1y≈0, and thus χeffQ2y2m2ysinθ/ε0B2y. Compared with Fig. 2(a), a similar absorption peak also appears, as shown in Fig. 2(c). That is because the SPs along the AC direction on BP1 are strongly excited, and SPs in the ZZ direction on the BP2 can hardly be excited by the incident light for the AC-ZZ configuration when θ=0°, as shown in the inset in Fig. 2(c). At this time, the parameters of ROT analysis can be fitted as: ω1x=ω2x=0, ω1y=0, γ1x=γ2y, γ1y=γ2x, m1x=m2y, m1y=m2x, Q2x≈0, Q1y=Q2y=0, and thus χeffQ1×2m1xcosθ/ε0B1x. At last, the similar absorption and reflection spectra appear for the ZZ-AC configurations in the case of θ=0°, as shown in Fig. 2(d), compared with AC-AC configuration when θ=90°. That is because the SPs in the ZZ direction on BP1 are excited, and SPs in the ZZ direction on BP2 can not be excited. Thus, ω2x=0, ω1y=ω2y=0, γ1x=γ2y, γ1y=γ2x, m1x=m2y, m1y=m2x, Q2x≈0, Q1y=Q2y=0 and χeffQ1×2m1xcosθ/ε0B1x. From Figs. 2(c) and 2(d), obvious non-reciprocal spectra, caused by the anisotropic surface conductivity for the BP layer, can be observed.

 figure: Fig. 2.

Fig. 2. Reflection and absorption spectra for the AC-AC configuration with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when θ=0° (a) and θ=90° (b), Reflection and absorption spectra for the AC-ZZ (c) and ZZ-AC (d) configurations with d=200 nm h1=600 nm, h2=20 nm, and w=100 nm when θ=0°. The inset show the electric field distributions on BP1 and BP2. Here, the black and red solid lines are the FDTD results, and the black and red circles are the ROT results.

Download Full Size | PPT Slide | PDF

Then, the dependence of polarization angle θ of input plane wave on the absorption of AC-AC, AC-ZZ, and ZZ-AC configurations are studied. The obvious periodic change for absorption spectra can be seen in the AC-AC configuration when θ increases from 0° to 360°, and the period is equal to 180°, as depicted in Fig. 3(a). The absorption peak 1 (AP1) caused by SPs in the AC direction can reach a maximum absorption value of 99.99% when θ=0° and 180°. However, the absorption peak 2 (AP2) caused by SPs in the ZZ direction can reach a maximum absorption of 47.40% when θ=90° and 270°. Figures 3(b) and 3(c) show the absorption spectra as a function of polarization angle θ for the AC-ZZ and ZZ-AC configurations, respectively. Interestingly, both AP1 for AC-ZZ configuration and AP2 for ZZ-AC configuration can realize the polarization independent absorption, which is different from the reported polarization independence absorption for metamaterial caused by circular symmetric components [43,44]. However, for anisotropic materials, structural symmetry and electromagnetic parameter symmetry are the necessary conditions to realize polarization independence properties.

 figure: Fig. 3.

Fig. 3. Dependence of θ on the absorption of (a) AC-AC, (b) AC-ZZ, and (c) ZZ-AC configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm.

Download Full Size | PPT Slide | PDF

These results are beneficial for designing polarization independent optical devices. Then, we can see that AP1 for the AC-AC configuration decreases sharply, and AP2 for the AC-AC configuration increases as θ increases from 0° to 90°, as shown in Fig. 4(a). In addition, the AP2 for ZZ-AC configuration decreases very slowly, but the AP1 for the AC-ZZ configuration continues to stay above 99%. The almost perfect absorption is of great significance for achieving high-performance absorption devices. At last, we study non-reciprocal absorption properties of AC-ZZ and ZZ-AC configurations when θ=0° and 90°, as shown in Fig. 4(b). Here, we define the non-reciprocal degree NRD=|(AAC-ZZ-AZZ-AC)/(AAC-ZZ+AZZ-AC)| to describe the non-reciprocal absorption properties [45]. From Fig. 4(b), we can see that NRD can reach the maximum of 0.91 and 0.84 at the wavelength of AP1 and AP2, respectively. Especially, the reciprocal absorption also can be achieved at the wavelength of 9.89 μm and 10.12 μm when θ=0° and 90°, which is caused by the different excitation order of resonance mode for AC and ZZ directions. Thus, the two-layer anisotropic BP metamaterials can realize tunable non-reciprocal absorption properties.

 figure: Fig. 4.

Fig. 4. (a) Absorption ratio at AP1 and AP2 for the AC-AC configuration, AP1 for the AC-ZZ configuration, and AP2 for the ZZ-AC configuration with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm. (b) NRD of AC-ZZ (ZZ-AC) configuration when θ=0° (90°) with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm.

Download Full Size | PPT Slide | PDF

In the above study, we set a long coupling distance d for simplification of calculation in ROT analysis. In fact, the effect of coupling distance on the absorption can not be ignored in the case of strong coupling. Here, we discuss the absorption spectra versus the coupling distance d for AC-AC, AC-ZZ, and ZZ-AC configurations of two-layer anisotropic BP metamaterials. Figure 5(a) shows the absorption when d=25 nm, 50 nm, 100 nm, and 200 nm. The same absorption spectra can be seen when d=100 nm and 200 nm, which is caused by the weak coupling between BP1 and BP2. The absorption curve splits into two peaks when d=50 nm, and the two splitting absorption peaks move far away from each other when d decreases as shown in Fig. 5(a). The absorption shows a slight blue-shift, and the other SP mode on BP2 is also excited when d decreases for the AC-ZZ configuration, as depicted in Fig. 5(b). However, the absorption peak shows a red-shift for the ZZ-AC configuration as d decreases. Comparing with Figs. 5(a)–(c), we can see that the influence of the coupling distance on the AC-AC configuration is greater than those of AC-ZZ and ZZ-AC configurations as a result of intense SPs along the AC direction of the BP layer. At last, the result about NRD versus d is depicted in Fig. 5(d), we can see that the blue-shift and red-shift appear for the non-reciprocal peaks of the AP1 and AP2 when d decreases, respectively. In addition, NRD at AP1 and AP2 also slightly decreases with the decrease of d.

 figure: Fig. 5.

Fig. 5. Dependence of d on the absorption for AC-AC (a), AC-ZZ (b), and ZZ-AC (c) configurations with θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. (d) NRD of AC-ZZ and ZZ-AC configurations with θ=0°, h1=600 nm, h2=20 nm, and w=100 nm when d=25 nm, 50 nm, 100 nm, and 200 nm, respectively.

Download Full Size | PPT Slide | PDF

Here, we investigate the effect of carrier density n on the absorption for the proposed AC-AC, AC-ZZ, and ZZ-AC configurations of two-layer anisotropic BP metamaterials. Obvious blue-shift absorption spectra can be observed for AC-AC, AC-ZZ, and ZZ-AC configurations when the carrier density n increases from 0.8×1014 cm−2 to 1.2×1014 cm−2, as shown in Figs. 6(a)–(c). Except for the blue-shift, the absorption ratios at AP1 and AP2 almost keep a constant. The NRD as a function of carrier density n is also depicted in Fig. 6(d). We can see that non-reciprocal peaks show blue-shifts as n increases. Especially, the position of NRD=0 can also be effectively tuned by the carrier density n in the two-layer anisotropic BP metamaterials.

 figure: Fig. 6.

Fig. 6. Dependence of carrier density n on the absorption in AC-AC (a), AC-ZZ (b), and ZZ-AC (c) configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. (d) NRD of AC-ZZ and ZZ-AC configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm when n=0.8×1014 cm−2, 0.9×1014 cm−2, 1.0×1014 cm−2, and 1.1×1014 cm−2, respectively.

Download Full Size | PPT Slide | PDF

3.2 Absorption of three-layer anisotropic BP metamaterials

Here, we further discuss the dependence of the rotation angle φ on the absorption spectra for the AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ three-layer anisotropic BP metamaterials when θ=0°. Figures 7(a) and 7(b) show the same absorption of AC-AC-φ and AC-ZZ-φ configurations, which are caused by the same excitation of SPs on BP3 in the weak coupling case among the three BP layers. For the ZZ-AC-φ configuration, new strong absorption peaks appear at the wavelength of 8 μm when the rotation angle φ are around 45°, 135°, 225°, and 315°. Then, the NRD based on the rotation angle φ is also investigated for the AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations, as shown in Fig. 7(d). We can see that the non-reciprocal peak of AP1 first decreases and then increases, but the non-reciprocal peak of the AP2 decreases as the rotation angle φ increases from 0° to 90°. Interestingly, the position of NRD=0 always keep a constant when φ increases.

 figure: Fig. 7.

Fig. 7. Dependence of rotation angle φ on the absorption of (a) AC-AC-φ, (b) AC-ZZ-φ, and (c) ZZ-AC-φ configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. (d) NRD of AC-ZZ-φ and ZZ-AC-φ configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. when φ=0°, 30°, 45°, 60°, and 90°, respectively.

Download Full Size | PPT Slide | PDF

At last, to realize the polarization independent absorption for odd-layer BP metamaterials, we study the dependence of the polarization angle θ on the absorption of the AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations with d=200 nm as the rotation angle φ=0°, 45°, and 90°, respectively. When φ=0°, the absorption spectra of the AC-AC-φ configuration are the same as those of the AC-AC configuration, as shown in Figs. 3(a) and 8(a). For φ=45°, an extra SPs mode named as AP3 is excited on BP3 forming another absorption peak at the wavelength of 12.3 μm, as depicted in Fig. 8(b). In addition, compared with the case of φ=0°, the maximum of absorption for the AP1 rotates 15° along the counterclockwise, as shown in Figs. 8(a) and 8(b). Figure 8(c) shows the polarization independent absorption of the AP2 for the AC-AC-φ configuration when φ=90°, which is in contrast to the inability to achieve the polarization independent absorption of the AC-AC configuration. Here, we also introduce three ROT to fit the numerical results marked by squares, as shown in Figs. 8(a)–(c). The parameters of ROT analysis for the AC-AC-φ configuration can be expressed as: γ1x=γ2x, γ1y=γ2y, γ3x=γ1xcos(φ)+γ1ysin(φ), γ3y=γ1xsin(φ)+γ1ycos(φ), m1x=m2x, m1y=m2y, m3x≈|m1xcos(φ)+m1ysin(φ)|, and m3y≈|m1xsin(φ)+m1ycos(φ)|. According to Eq. (8), we fit the FDTD results with the ROT analytical results. Then, we study the absorption spectra versus the polarization angle θ as φ=0°, 45°, and 90° for the AC-ZZ-φ configuration. The polarization independent perfect absorption for the AP1 can be observed when φ=0°, 45°, and 90° for the AC-ZZ-φ configuration, as plotted in Figs. 8(d)–(f). Interestingly, the absorption for the AP3 also exhibits the polarization independent response when φ=45°, as shown in Fig. 8(e). Interestingly, the absorption spectra rotate 90° for φ=0° and 90°, as shown in Figs. 8(d) and 8(f). For the AC-ZZ-φ configuration, the parameters can be expressed as: γ1x=γ2y, γ1y=γ2x, γ3x=γ1xcos(φ)+γ1ysin(φ), γ3y=γ1xsin(φ)+γ1ycos(φ), m1x=m2y, m1y=m2x, m3x≈|m1xcos(φ)+m1ysin(φ)|, and m3y≈|m1xsin(φ)+m1ycos(φ)|. We can see that the simulation results are in good agreement with the ROT results, as shown in Figs. 8(d) and 8(f). At last, the effect of the polarization angle θ on the absorption of the ZZ-AC-φ configuration as the rotation angle φ=0°, 45°, and 90° are discussed in Figs. 8(g) and 8(i). Owing to the same SPs on the BP1 and BP2, we can see that the polarization independent absorption for the AP2 can be achieved for the ZZ-AC-φ configuration when φ=0°, as shown in Fig. 8(g). For φ=45°, the AP2 still keeps the polarization independent absorption, but another two polarization dependent absorption peaks occur at the wavelength of 8.0 μm and 12.3 μm. They are caused by the SPs excited on the BP1 and BP3. In the case of φ=90°, the absorption for the AP2 shows a slight change when the polarization angle θ increases from 0° to 360°. The square marking shows the ROT analysis results, which are in consistent with the numerical results, as shown in Figs. 8(g)–(i). From the results in Fig. 8, we can see that the polarization independent absorption can also be realized for odd-layer BP metamaterials.

 figure: Fig. 8.

Fig. 8. Dependence of polarization angle θ on the absorption of AC-AC-φ configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when (a) φ=0°, (b) 45°, and (c) 90°. Dependence of polarization angle θ on the absorption of AC-ZZ-φ configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when (d) φ=0°, (e) 45°, and (f) 90°. Dependence of polarization angle θ on the absorption of ZZ-AC-φ configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when (g) φ=0°, (h) 45°, and (i) 90°.

Download Full Size | PPT Slide | PDF

4. Summary

In summary, we have investigated the absorption properties of two- and three-layer anisotropic BP metamaterials through FDTD simulation and ROT analysis. We can see that the SPs can be excited on the surface of BP layer forming the obvious absorption, which can be well described by the proposed ROT theoretical analysis. Then, the dependence of polarization angle θ on the absorption is discussed for the AC-AC, AC-ZZ, ZZ-AC, two-layer anisotropic BP metamaterials. We can find that the polarization independent absorption can be realized in the case of AC-ZZ and ZZ-AC configurations. Especially, the perfect absorption can be realized in the case of AC-ZZ configurations. We can also find that the AP1 for AC-ZZ and AP2 for ZZ-AC stones insensitive to polarization angles. In addition, the obvious non-reciprocal absorption also can be observed at the wavelength of 9.89 μm and 10.12 μm when θ=0° and 90° AC-ZZ and ZZ-AC configurations, respectively. Then, the absorption and NRD for the AC-AC, AC-ZZ, ZZ-AC can be effectively tuned by the coupling distance and carrier density of the BP layer. We can see that the absorption increases as the coupling distance d increases. Moreover, the absorption responses for the AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ three-layer anisotropic BP metamaterials are studied in detail. The tunable absorption spectra can not only be realized by tuning the rotation angle φ, but also show the polarization independent absorption at different wavelengths in the AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations. These results prove that the polarization independent absorption can not only be achieved in the even-layer BP, but also in the odd-layer configurations. The results may play important role in designing tunable polarization independent and non-reciprocal plasmonic devices in anisotropic 2D materials.

Funding

National Key Research and Development Program of China (2017YFA0303800); National Natural Science Foundation of China (11774290, 11974283, 61705186, 62065017); China Postdoctoral Science Foundation (2019M653722); Fundamental Research Funds for the Central Universities (310201911FZ049); Natural Science Basic Research Program of Shaanxi Province (2020JM-130).

Disclosures

We declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013). [CrossRef]  

2. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017). [CrossRef]  

3. C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020). [CrossRef]  

4. H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017). [CrossRef]  

5. Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020). [CrossRef]  

6. Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020). [CrossRef]  

7. X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016). [CrossRef]  

8. S. Xia, X. Zhai, L. Wang, and S. Wen, “Polarization-independent plasmonic absorption in stacked anisotropic 2D material nanostructures,” Opt. Lett. 45(1), 93–96 (2020). [CrossRef]  

9. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017). [CrossRef]  

10. H. Nguyen and V. Nguyen, “Comment on “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 94(11), 117401 (2016). [CrossRef]  

11. H. Xu, Z. He, Z. Chen, G. Nie, and H. Li, “Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system,” Opt. Express 28(18), 25767–25777 (2020). [CrossRef]  

12. C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020). [CrossRef]  

13. M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020). [CrossRef]  

14. Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021). [CrossRef]  

15. C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020). [CrossRef]  

16. J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020). [CrossRef]  

17. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014). [CrossRef]  

18. E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019). [CrossRef]  

19. K.-T. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015). [CrossRef]  

20. C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019). [CrossRef]  

21. C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020). [CrossRef]  

22. L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018). [CrossRef]  

23. A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015). [CrossRef]  

24. P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019). [CrossRef]  

25. Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020). [CrossRef]  

26. Z. He, H. Li, B. Li, Z. Chen, H. Xu, and M. Zheng, “Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub,” Opt. Lett. 41(22), 5206–5209 (2016). [CrossRef]  

27. L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014). [CrossRef]  

28. C. E. Villegas, A. Rocha, and A. Marini, “Anomalous temperature dependence of the band gap in black phosphorus,” Nano Lett. 16(8), 5095–5101 (2016). [CrossRef]  

29. C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, “Layered black phosphorus as a selective vapor sensor,” Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015). [CrossRef]  

30. H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018). [CrossRef]  

31. S. Xia, X. Zhai, L. Wang, and S. Wen, “Plasmonically induced transparency in in-plane isotropic and anisotropic 2D materials,” Opt. Express 28(6), 7980–8002 (2020). [CrossRef]  

32. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, and D. Tang, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015). [CrossRef]  

33. J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018). [CrossRef]  

34. J. Liu, Y. Chen, Y. Li, H. Zhang, S. Zheng, and S. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photon. Res. 6(3), 198 (2018). [CrossRef]  

35. E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

36. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018). [CrossRef]  

37. H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017). [CrossRef]  

38. A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014). [CrossRef]  

39. Y. Li, S. Wang, Y. Ou, G. He, X. Zhai, H. Li, and L. Wang, “Dynamically tunable narrowband anisotropic total absorption in monolayer black phosphorus based on critical coupling,” Opt. Express 29(2), 2909–2919 (2021). [CrossRef]  

40. J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014). [CrossRef]  

41. Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014). [CrossRef]  

42. F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012). [CrossRef]  

43. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018). [CrossRef]  

44. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009). [CrossRef]  

45. Z. He, J. Zhao, and H. Lu, “Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems,” Appl. Phys. Express 13(1), 012009 (2020). [CrossRef]  

References

  • View by:

  1. M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
    [Crossref]
  2. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
    [Crossref]
  3. C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
    [Crossref]
  4. H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
    [Crossref]
  5. Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
    [Crossref]
  6. Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
    [Crossref]
  7. X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
    [Crossref]
  8. S. Xia, X. Zhai, L. Wang, and S. Wen, “Polarization-independent plasmonic absorption in stacked anisotropic 2D material nanostructures,” Opt. Lett. 45(1), 93–96 (2020).
    [Crossref]
  9. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
    [Crossref]
  10. H. Nguyen and V. Nguyen, “Comment on “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 94(11), 117401 (2016).
    [Crossref]
  11. H. Xu, Z. He, Z. Chen, G. Nie, and H. Li, “Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system,” Opt. Express 28(18), 25767–25777 (2020).
    [Crossref]
  12. C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
    [Crossref]
  13. M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
    [Crossref]
  14. Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
    [Crossref]
  15. C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
    [Crossref]
  16. J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
    [Crossref]
  17. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  18. E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
    [Crossref]
  19. K.-T. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
    [Crossref]
  20. C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
    [Crossref]
  21. C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
    [Crossref]
  22. L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
    [Crossref]
  23. A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
    [Crossref]
  24. P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
    [Crossref]
  25. Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
    [Crossref]
  26. Z. He, H. Li, B. Li, Z. Chen, H. Xu, and M. Zheng, “Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub,” Opt. Lett. 41(22), 5206–5209 (2016).
    [Crossref]
  27. L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
    [Crossref]
  28. C. E. Villegas, A. Rocha, and A. Marini, “Anomalous temperature dependence of the band gap in black phosphorus,” Nano Lett. 16(8), 5095–5101 (2016).
    [Crossref]
  29. C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, “Layered black phosphorus as a selective vapor sensor,” Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015).
    [Crossref]
  30. H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
    [Crossref]
  31. S. Xia, X. Zhai, L. Wang, and S. Wen, “Plasmonically induced transparency in in-plane isotropic and anisotropic 2D materials,” Opt. Express 28(6), 7980–8002 (2020).
    [Crossref]
  32. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, and D. Tang, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref]
  33. J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
    [Crossref]
  34. J. Liu, Y. Chen, Y. Li, H. Zhang, S. Zheng, and S. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photon. Res. 6(3), 198 (2018).
    [Crossref]
  35. E. D. Palik, Handbook of optical constants of solids (Academic, 1998).
  36. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
    [Crossref]
  37. H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
    [Crossref]
  38. A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
    [Crossref]
  39. Y. Li, S. Wang, Y. Ou, G. He, X. Zhai, H. Li, and L. Wang, “Dynamically tunable narrowband anisotropic total absorption in monolayer black phosphorus based on critical coupling,” Opt. Express 29(2), 2909–2919 (2021).
    [Crossref]
  40. J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
    [Crossref]
  41. Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
    [Crossref]
  42. F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
    [Crossref]
  43. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
    [Crossref]
  44. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
    [Crossref]
  45. Z. He, J. Zhao, and H. Lu, “Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems,” Appl. Phys. Express 13(1), 012009 (2020).
    [Crossref]

2021 (2)

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Y. Li, S. Wang, Y. Ou, G. He, X. Zhai, H. Li, and L. Wang, “Dynamically tunable narrowband anisotropic total absorption in monolayer black phosphorus based on critical coupling,” Opt. Express 29(2), 2909–2919 (2021).
[Crossref]

2020 (13)

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

H. Xu, Z. He, Z. Chen, G. Nie, and H. Li, “Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system,” Opt. Express 28(18), 25767–25777 (2020).
[Crossref]

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
[Crossref]

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

S. Xia, X. Zhai, L. Wang, and S. Wen, “Polarization-independent plasmonic absorption in stacked anisotropic 2D material nanostructures,” Opt. Lett. 45(1), 93–96 (2020).
[Crossref]

S. Xia, X. Zhai, L. Wang, and S. Wen, “Plasmonically induced transparency in in-plane isotropic and anisotropic 2D materials,” Opt. Express 28(6), 7980–8002 (2020).
[Crossref]

Z. He, J. Zhao, and H. Lu, “Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems,” Appl. Phys. Express 13(1), 012009 (2020).
[Crossref]

2019 (3)

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

2018 (6)

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

J. Liu, Y. Chen, Y. Li, H. Zhang, S. Zheng, and S. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photon. Res. 6(3), 198 (2018).
[Crossref]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref]

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

2017 (4)

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

2016 (4)

H. Nguyen and V. Nguyen, “Comment on “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 94(11), 117401 (2016).
[Crossref]

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Z. He, H. Li, B. Li, Z. Chen, H. Xu, and M. Zheng, “Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub,” Opt. Lett. 41(22), 5206–5209 (2016).
[Crossref]

C. E. Villegas, A. Rocha, and A. Marini, “Anomalous temperature dependence of the band gap in black phosphorus,” Nano Lett. 16(8), 5095–5101 (2016).
[Crossref]

2015 (4)

C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, “Layered black phosphorus as a selective vapor sensor,” Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015).
[Crossref]

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

K.-T. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, and D. Tang, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

2014 (5)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
[Crossref]

2013 (1)

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

2012 (1)

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

2009 (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
[Crossref]

Avouris, P.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Bachmatiuk, A.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Bao, Q.

Caldwell, J. D.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Cao, G.

Cao, X.

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Carvalho, A.

A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

Chaves, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Chen, H.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Chen, R.

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

Chen, S.

Chen, X.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Chen, Y.

Chen, Z.

Cui, W.

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

de Rooij, N. F.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Erni, D.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Fang, N. X.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Favron, A.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Feng, J.

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Fossard, F.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Francoeur, S.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Fu, L.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Gan, X.

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Gao, E.

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

Gaufrès, E.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Gemming, T.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Gong, Y.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

Guinea, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Guo, J.

K.-T. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

Guo, Z.

Han, L.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

He, G.

He, Z.

Heinz, T. F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
[Crossref]

Hobson, P. A.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
[Crossref]

Hong, J.-Y.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Hu, K.

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

Hu, Z.-X.

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Huang, S.

C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
[Crossref]

Huang, Y.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

Hwang, J. Y.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Ji, W.

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Jiang, G.

Katsnelson, M. I.

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

Kim, H. J.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Kim, S.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Kong, X.

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Koppens, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Kumar, A.

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Lam, K.-T.

K.-T. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

Lan, G.

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
[Crossref]

Lee, J.-C.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Lee, W.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Leonelli, R.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Lévesque, P. L.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Li, B.

Li, C.

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Li, H.

Y. Li, S. Wang, Y. Ou, G. He, X. Zhai, H. Li, and L. Wang, “Dynamically tunable narrowband anisotropic total absorption in monolayer black phosphorus based on critical coupling,” Opt. Express 29(2), 2909–2919 (2021).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

H. Xu, Z. He, Z. Chen, G. Nie, and H. Li, “Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system,” Opt. Express 28(18), 25767–25777 (2020).
[Crossref]

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

Z. He, H. Li, B. Li, Z. Chen, H. Xu, and M. Zheng, “Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub,” Opt. Lett. 41(22), 5206–5209 (2016).
[Crossref]

Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
[Crossref]

Li, L.

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Li, M.

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

Li, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

Li, Y.

Li, Z.

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Liang, L.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

Liang, T.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Lin, W.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

Liu, C.

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

Liu, H.

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

Liu, J.

Liu, L.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

Liu, Z.

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
[Crossref]

Loiseau, A.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Low, T.

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Lu, H.

Z. He, J. Zhao, and H. Lu, “Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems,” Appl. Phys. Express 13(1), 012009 (2020).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Luo, X.

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

Luo, Xin

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

Ma, H.

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Ma, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

Mao, D.

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Marini, A.

C. E. Villegas, A. Rocha, and A. Marini, “Anomalous temperature dependence of the band gap in black phosphorus,” Nano Lett. 16(8), 5095–5101 (2016).
[Crossref]

Martel, R.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Martin-Moreno, L.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

Mayorga-Martinez, C. C.

C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, “Layered black phosphorus as a selective vapor sensor,” Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015).
[Crossref]

Mendes, R. G.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Meng, F.-Y.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Meunier, V.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

Min, L.

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

Nakhanivej, P.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Nemilentsau, A.

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

Neto, A. C.

A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

Nguyen, H.

H. Nguyen and V. Nguyen, “Comment on “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 94(11), 117401 (2016).
[Crossref]

Nguyen, V.

H. Nguyen and V. Nguyen, “Comment on “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 94(11), 117401 (2016).
[Crossref]

Nie, G.

Niu, Y.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Nong, J.

Ou, Y.

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

Pan, M.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

Pang, J.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Park, S. K.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Phaneuf-L’Heureux, A.-L.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Pu, L.

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Pu, M.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

Pumera, M.

C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, “Layered black phosphorus as a selective vapor sensor,” Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015).
[Crossref]

Qiao, J.

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rocha, A.

C. E. Villegas, A. Rocha, and A. Marini, “Anomalous temperature dependence of the band gap in black phosphorus,” Nano Lett. 16(8), 5095–5101 (2016).
[Crossref]

Rodin, A.

A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

Roldán, R.

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

Ruan, B.

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

Rummeli, M. H.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
[Crossref]

Shang, Z.

Shi, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Sofer, Z.

C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, “Layered black phosphorus as a selective vapor sensor,” Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015).
[Crossref]

Sumpter, B. G.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

Tang, D.

Tang, L.

Tang, N. Y.

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

Trzebicka, B.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Umar, A.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Van Veen, E.

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

Villegas, C. E.

C. E. Villegas, A. Rocha, and A. Marini, “Anomalous temperature dependence of the band gap in black phosphorus,” Nano Lett. 16(8), 5095–5101 (2016).
[Crossref]

Wang, C.

C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
[Crossref]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, J.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

Wang, L.

Wang, Q.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Wang, S.

Y. Li, S. Wang, Y. Ou, G. He, X. Zhai, H. Li, and L. Wang, “Dynamically tunable narrowband anisotropic total absorption in monolayer black phosphorus based on critical coupling,” Opt. Express 29(2), 2909–2919 (2021).
[Crossref]

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

Wang, W.

Wang, X.

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Wang, Y.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Wei, W.

Wen, S.

Wolverton, C.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Wu, K.

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wu, Q.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xia, S.

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, X.

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Xie, Y.

C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
[Crossref]

Xing, H.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Xiong, C.

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

Xu, H.

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

H. Xu, Z. He, Z. Chen, G. Nie, and H. Li, “Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system,” Opt. Express 28(18), 25767–25777 (2020).
[Crossref]

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

Z. He, H. Li, B. Li, Z. Chen, H. Xu, and M. Zheng, “Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub,” Opt. Lett. 41(22), 5206–5209 (2016).
[Crossref]

Xu, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

Xu, S.

Xue, W.

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Yan, D.

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

Yan, H.

C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
[Crossref]

Yang, F.

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Yang, J. E.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Yao, J.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Yi, J.

Yi, Z.

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Yin, Y.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Yu, X.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, and D. Tang, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

Yuan, C.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Yuan, S.

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

Zeng, B.

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

Zeng, J.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Zhai, X.

Zhan, S.

Zhang, B.

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

Zhang, G.

C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
[Crossref]

Zhang, H.

Zhang, X.

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Zhang, Z.

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

Zhao, C.

Zhao, J.

Z. He, J. Zhao, and H. Lu, “Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems,” Appl. Phys. Express 13(1), 012009 (2020).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Zhao, L.

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Zhao, M.

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, B. Zhang, and K. Wu, “Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials,” J. Opt. Soc. Am. B 36(11), 3060–3065 (2019).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

Zhao, X.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Zheng, M.

Zheng, S.

Zhou, F.

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Zhou, G.

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Zhu, L.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Zou, Y.

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

ACS Photonics (1)

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

ACS Sens. (1)

J. Zeng, Y. Niu, Y. Gong, Q. Wang, H. Li, A. Umar, N. F. de Rooij, G. Zhou, and Y. Wang, “All-Dry Transferred ReS2 Nanosheets for Ultrasensitive Room-Temperature NO2 Sensing under Visible Light Illumination,” ACS Sens. 5(10), 3172–3181 (2020).
[Crossref]

Adv. Energy Mater. (1)

J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Adv. Energy Mater. 8(8), 1702093 (2018).
[Crossref]

Adv. Mater. (1)

H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, and S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30(32), 1800295 (2018).
[Crossref]

Adv. Opt. Mater. (1)

C. Wang, G. Zhang, S. Huang, Y. Xie, and H. Yan, “The optical properties and plasmonics of anisotropic 2D materials,” Adv. Opt. Mater. 8(5), 1900996 (2020).
[Crossref]

Angew. Chem. Int. Ed. (1)

C. C. Mayorga-Martinez, Z. Sofer, and M. Pumera, “Layered black phosphorus as a selective vapor sensor,” Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015).
[Crossref]

Appl. Phys. Express (1)

Z. He, J. Zhao, and H. Lu, “Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems,” Appl. Phys. Express 13(1), 012009 (2020).
[Crossref]

Appl. Phys. Lett. (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009).
[Crossref]

Chem. Rev. (1)

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113(5), 3766–3798 (2013).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

J. Appl. Phys. (2)

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, and K. Wu, “Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon,” J. Appl. Phys. 127(16), 163301 (2020).
[Crossref]

K.-T. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref]

C. E. Villegas, A. Rocha, and A. Marini, “Anomalous temperature dependence of the band gap in black phosphorus,” Nano Lett. 16(8), 5095–5101 (2016).
[Crossref]

Nanomaterials (1)

Z. He, W. Xue, W. Cui, C. Li, Z. Li, L. Pu, J. Feng, X. Xiao, and X. Wang, “Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface,” Nanomaterials 10(4), 687 (2020).
[Crossref]

Nanoscale (2)

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref]

Nat. Commun. (1)

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Nat. Mater. (3)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref]

A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826–832 (2015).
[Crossref]

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J.-Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, and C. Wolverton, “Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets,” Nat. Mater. 18(2), 156–162 (2019).
[Crossref]

Nat. Photonics (1)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

New J. Phys. (4)

M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, and K. Wu, “Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial,” New J. Phys. 22(10), 103030 (2020).
[Crossref]

Z. Liu, E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou, “Terahertz electro-optical multi-functions modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip,” New J. Phys. 22(5), 053039 (2020).
[Crossref]

Z. Liu, X. Zhang, Z. Zhang, E. Gao, F. Zhou, H. Li, and Xin Luo, “Simultaneous Switching at Multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial,” New J. Phys. 22(8), 083006 (2020).
[Crossref]

C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, L. Min, B. Ruan, B. Zhang, and K. Wu, “Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials,” New J. Phys. 22(7), 073049 (2020).
[Crossref]

Opt. Express (7)

S. Xia, X. Zhai, L. Wang, and S. Wen, “Plasmonically induced transparency in in-plane isotropic and anisotropic 2D materials,” Opt. Express 28(6), 7980–8002 (2020).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, and D. Tang, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

H. Xu, Z. He, Z. Chen, G. Nie, and H. Li, “Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system,” Opt. Express 28(18), 25767–25777 (2020).
[Crossref]

Y. Li, S. Wang, Y. Ou, G. He, X. Zhai, H. Li, and L. Wang, “Dynamically tunable narrowband anisotropic total absorption in monolayer black phosphorus based on critical coupling,” Opt. Express 29(2), 2909–2919 (2021).
[Crossref]

Opt. Lett. (3)

Photon. Res. (1)

Photonics Res. (1)

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Phys. Rev. Appl. (1)

E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M. I. Katsnelson, T. Low, and S. Yuan, “Tuning two-dimensional hyperbolic plasmons in black phosphorus,” Phys. Rev. Appl. 12(1), 014011 (2019).
[Crossref]

Phys. Rev. B (1)

H. Nguyen and V. Nguyen, “Comment on “Orientation dependence of the optical spectra in graphene at high frequencies,” Phys. Rev. B 94(11), 117401 (2016).
[Crossref]

Phys. Rev. Lett. (1)

A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

Results Phys. (1)

Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, X. Cao, and W. Cui, “Graphene-based metasurface sensing applications in terahertz band,” Results Phys. 21, 103795 (2021).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, and H. Li, “Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure,” Sci. China Phys. Mech. Astron. 64, 1–11 (2020).
[Crossref]

Other (1)

E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic diagram of AC-AC, AC-ZZ, and ZZ-AC configurations for two-layer anisotropic BP metamaterials and their (b) top view and (c) front view. (d) Schematic diagram of AC-AC-φ, AC-ZZ-φ, and ZZ-AC-φ configurations for three-layer anisotropic BP metamaterials and their (e) top view and (f) front view. (g) Anisotropic conductivity of BP in AC and ZZ directions as the carrier density n=1.2×1014 cm−2.
Fig. 2.
Fig. 2. Reflection and absorption spectra for the AC-AC configuration with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when θ=0° (a) and θ=90° (b), Reflection and absorption spectra for the AC-ZZ (c) and ZZ-AC (d) configurations with d=200 nm h1=600 nm, h2=20 nm, and w=100 nm when θ=0°. The inset show the electric field distributions on BP1 and BP2. Here, the black and red solid lines are the FDTD results, and the black and red circles are the ROT results.
Fig. 3.
Fig. 3. Dependence of θ on the absorption of (a) AC-AC, (b) AC-ZZ, and (c) ZZ-AC configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm.
Fig. 4.
Fig. 4. (a) Absorption ratio at AP1 and AP2 for the AC-AC configuration, AP1 for the AC-ZZ configuration, and AP2 for the ZZ-AC configuration with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm. (b) NRD of AC-ZZ (ZZ-AC) configuration when θ=0° (90°) with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm.
Fig. 5.
Fig. 5. Dependence of d on the absorption for AC-AC (a), AC-ZZ (b), and ZZ-AC (c) configurations with θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. (d) NRD of AC-ZZ and ZZ-AC configurations with θ=0°, h1=600 nm, h2=20 nm, and w=100 nm when d=25 nm, 50 nm, 100 nm, and 200 nm, respectively.
Fig. 6.
Fig. 6. Dependence of carrier density n on the absorption in AC-AC (a), AC-ZZ (b), and ZZ-AC (c) configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. (d) NRD of AC-ZZ and ZZ-AC configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm when n=0.8×1014 cm−2, 0.9×1014 cm−2, 1.0×1014 cm−2, and 1.1×1014 cm−2, respectively.
Fig. 7.
Fig. 7. Dependence of rotation angle φ on the absorption of (a) AC-AC-φ, (b) AC-ZZ-φ, and (c) ZZ-AC-φ configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. (d) NRD of AC-ZZ-φ and ZZ-AC-φ configurations with d=200 nm, θ=0°, h1=600 nm, h2=20 nm, and w=100 nm. when φ=0°, 30°, 45°, 60°, and 90°, respectively.
Fig. 8.
Fig. 8. Dependence of polarization angle θ on the absorption of AC-AC-φ configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when (a) φ=0°, (b) 45°, and (c) 90°. Dependence of polarization angle θ on the absorption of AC-ZZ-φ configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when (d) φ=0°, (e) 45°, and (f) 90°. Dependence of polarization angle θ on the absorption of ZZ-AC-φ configurations with d=200 nm, h1=600 nm, h2=20 nm, and w=100 nm when (g) φ=0°, (h) 45°, and (i) 90°.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε j = i D j π ( ω + i η / ) , D j = π e 2 n m j
m AC = 2 2 μ 2 Δ + ζ , m ZZ = 2 2 v
( B 1 p κ 12 p κ 21 p B 2 p ) ( A 1 p A 2 p ) = ( Q 1 p E 0 f p ( θ ) / m 1 p Q 2 p E 0 f p ( θ ) / m 2 p )
A 1 ( 2 ) p = Q 1 ( 2 ) p E 0 f p ( θ ) / m 1 ( 2 ) p B 1 ( 2 ) p
χ e f f = ( Q 1 x A 1 x + Q 2 x A 2 x ) 2 + ( Q 1 y A 1 y + Q 2 y A 2 y ) 2 / ε 0 E 0
( B 1 p 0 0 0 B 2 p 0 0 0 B 3 p ) ( A 1 p A 2 p A 3 p ) = ( Q 1 p E 0 f p ( θ ) / m 1 p Q 2 p E 0 f p ( θ ) / m 2 p Q 3 p E 0 f p ( θ φ ) / m 3 p )
A 1 ( 2 ) p = Q 1 ( 2 ) p E 0 f p ( θ ) / m 1 ( 2 ) p B 1 ( 2 ) p A 3 p = Q 3 p E 0 f p ( θ φ ) / m 3 p B 3 p
χ e f f = ( Q 1 x A 1 x + Q 2 x A 2 x + Q 3 x A 3 x ) 2 + ( Q 1 y A 1 y + Q 2 y A 2 y + Q 3 y A 3 y ) 2 / ε 0 E 0

Metrics