Abstract

We propose and demonstrate a tunable dual-band mid-infrared absorber structure based on the coupling effect of a surface plasmon polariton (SPP) and Tamm phonon-polariton (TPhP). The structure is composed of the distributed Bragg reflector (DBR), air layer, SiC and graphene ribbons. In the air layer, the graphene ribbons are embedded to realize the localized SPP (LSPP), which makes the structure support both the graphene LSPP (GLSPP) and TPhP. The absorption properties of the structure are investigated theoretically and numerically. It is found that strong coupling of the GLSPP and TPhP can be realized by choosing reasonable parameters, which causes a dual-frequency perfect absorption and makes the maximum Rabi splitting of the coupled mode reach 5.76 meV. Furthermore, the mode coupling and absorption intensity can be tuned by adjusting the thickness of the air layer and the Fermi level of the graphene ribbons. This work might provide new possibilities for the development of mid-infrared band sensors, filters and emitters based on the coupling of multiple modes.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Efficient light absorption is a key issue in various micro-nano optoelectronic technologies. In recent years, mid-infrared light absorption has been widely used in sensors [1], filters and emitters [24]. Excitation of a resonance can confine most of incident electromagnetic waves inside the structure, increase the interaction between light and matter, suppress the transmission and reflection, and cause strong absorption. Therefore, such a resonant effect is often used to realize absorbers.

SPP is a special electromagnetic resonance mode. In the visible and near-infrared regions, it is generally constructed based on novel metals. While in the mid-infrared band, metals behave more like good conductors, which limits the excitation of SPP effect. In this case, graphene becomes a substitute for metal. Graphene has excellent electronic, mechanical and optical properties. It has ultra-high carrier mobility, and its conductivity can be dynamically modulated in a wide range by external doping or bias voltage [57]. To use photons to excite SPP, graphene can be patterned into different periodic resonators, such as strips or disks [810]. The resonant frequency depends on the structure size and carrier concentration of graphene. When the plasmon resonance arises, the electric field is confined locally and the absorption rate increases consequently. Based on graphene SPP, researchers have proposed many perfect absorption structures, such as single-band, dual-band, multi-band and broadband perfect absorption structures in the mid-infrared and terahertz bands [1115].

Tamm plasmon polariton (TPP) usually exists at the interface between a metal film and a DBR [16,17]. It can be excited directly without specific dispersion compensation and has no polarization dependence. Its line width is narrower, and loss is smaller. It can generate a stronger local electric field at the interface. In the visible and near-infrared bands, the TPP mode is limited to the interface between the DBR and metal, and the former is due to the photon stopband, and the latter is attributed to the negative dielectric constant of metal. However, metal suffers from energy loss in the mid-infrared region, which makes it not suitable for plasmon resonance material. In this case, the polar dielectric semiconductors can replace metals as negative dielectric constant materials. Polar semiconductors show the metallic properties in certain wavebands. Incident light cannot enter into the crystal but excite the surface phonon polariton on its surface [18]. The surface phonon polariton replaces the role of SPP and produces TPhP which is similar to TPP at the interface between the polar semiconductors and the DBR [19,20].

Mode coupling is a route of energy exchange, which can enhance resonance or adjust resonance frequency. Using the coupling between TPP and other modes to adjust the resonance frequency or to enhance light absorption has been demonstrated theoretically and experimentally [2126]. For instance, Wang et al. realized narrow-band spectral-selective thermal emission in the mid-infrared range by the coupling of TPP and an optical cavity mode [2]. By embedding monolayer graphene into a topological photonic crystal (TPC)/Ag structure, Hu et al. investigated the strong coupling between TPP and TPC in the visible range, and achieved polarization-independent and controllable dual-narrow-band perfect absorption [27]. Zhang et al. designed a system in which the graphene Tamm mode and cavity mode are strongly coupled at terahertz frequencies. The resonance frequency and the damping rate can be actively adjusted by changing the Fermi level of graphene and the incident angle of light [28]. Qing et al. investigated the dual-band perfect absorption of the graphene-SiC hybrid system and the coupling characteristics between the modes in the mid-infrared regime [29]. However, using the coupling of TPhP mode produced by polar semiconductors and other modes to control the resonance spectrum has been rarely investigated in the mid-infrared regime.

In this paper, we extend SPP and TPP to the mid-infrared region, and propose a tunable dual-band mid-infrared absorber based on a composite structure that supports both GLSPP and TPhP. The properties of the absorber are investigated analytically using finite difference time domain (FDTD), transfer matrix method, and coupled harmonic oscillator model. The results show that there is a strong interaction between GLSPP and TPhP in the structure. Both absorption rates of two peaks of the coupled mode are above 99%, and the maximum Rabi splitting is 5.76meV. The simulation results are in good agreement with the analytical calculation. More importantly, the coupling of GLSPP and TPhP can be controlled by adjusting the thickness of the air layer or the Fermi level of graphene.

2. Structure and theory

Figures 1(a) and 1(b) show the composite structure of TPhP and GLSPP. It consists of a SiC layer, an air layer, a DBR (Ge/BaF2/Ge/BaF2), and periodic graphene nanoribbons. The air layer is sandwiched between the polar semiconductor SiC and the DBR, which forms a microcavity. Periodic nanoribbons are deposited on the side of the DBR near the air layer. Concerning the experimental fabrication of this structure, pulsed laser deposition (PLD) can be used to make multilayer films [2]. Chemical vapor deposition (CVD)-grown graphene can be wet-transferred to the BaF2 film [30]. The thickness of the air layer can be adjusted by using stacked piezoelectric ceramics.

 figure: Fig. 1.

Fig. 1. (a)Schematic of the proposed TPhP-GLSPP coupled structure. (b) Side view of the coupled structure. (c) The Reflection spectrum of the DBR structure under TM-polarized normal incidence. (d) The dependence of the real part and the imaginary part of the permittivity of SiC on the wavelength. (e) The 2D view of the DBR-air layer-SiC structure used to generate TPhP.

Download Full Size | PPT Slide | PDF

In order to provide a large refractive index ratio in the mid-infrared band, thereby form a wide spectrum stopband and high reflectance, alternative Ge/BaF2/Ge/BaF2 films are chosen to be DBR. The refractive index of Ge is 4.0 [31]. The refractive index of the BaF2 is from 1.39 to 1.47 in the mid-infrared [32]. In our work, it is selected to be 1.45. The thicknesses of Ge film and BaF2 film are dh=0.6µm and dl=2µm, respectively. The graphene nanoribbons with a width of w=0.1µm are spread along the x-axis with period Px = 0.4µm. The structure is illuminated vertically by a plane wave with TM-polarization, and the light is incident from the DBR side. The photonic stopband of DBR is calculated and depicted in Fig. 1(c) which shows the reflectance of the incident light is more than 90% in the wavelength range of 10.28µm∼12.55µm.

SiC is a polar semiconductor, and its dielectric function can be described by the Lorentz oscillator model [33]:

$$\varepsilon (\omega ) = {\varepsilon _\infty }(1 + \frac{{\omega _{LO}^2 - \omega _{TO}^2}}{{\omega _{TO}^2 - {\omega ^2} - i\gamma \omega }}),$$
where ${\varepsilon _\infty }$ is the high frequency dielectric constant, $\omega$ is the angular frequency of the incident light, ${\omega _{LO}}$ is the longitudinal optical phonon frequency, ${\omega _{TO}}$ is the transverse optical phonon frequency, and $\gamma$ is the phonon damping coefficient. For SiC, ${\varepsilon _\infty } = 6.56$, ${\omega _{LO}} = 973c{m^{ - 1}}$ (10.28µm), ${\omega _{TO}} = 797c{m^{ - 1}}$ (12.55µm), $\gamma = 4.76c{m^{ - 1}}$. Figure 2(d) shows the complex permittivity of SiC. We can see that for the frequencies of the incident light between ${\omega _{LO}}$ and ${\omega _{TO}}$ (called reststrahlen band), the real part of the permittivity of SiC is negative. The incident light cannot enter into the SiC crystal but excite surface phonon polariton on its surface. The TPhP excited at the interface of DBR and SiC results in a sharp absorption peak in the absorption spectrum.

 figure: Fig. 2.

Fig. 2. (a) The simulated absorption varying with light wavelength and cavity thickness dc under normally incident light. The three dashed curves indicate different orders of the TPhP mode. (b) The absorption spectra for dc=8.50µm and dc=2.74µm. (c) The electric field distributions of A (dc=8.50µm, λ=11.619µm). (d) The electric field distributions of B (dc = 2.74µm, λ=11.619µm). (e) The relationship between the resonance wavelength and the air cavity thickness.

Download Full Size | PPT Slide | PDF

For the structure containing an air layer between DBR and SiC, as shown in Fig. 1(e), the resonance equation of the TPhP is [16]:

$${r_{DBR}}{r_{SiC}}\textrm{exp} (2i\delta ) = 1,$$

The phase of the left side of Eq. (2) should satisfy:

$$Arg[{r_{DBR}}{r_{SiC}}\textrm{exp} (2i\delta )] \approx 2N\pi ,$$
where rDBR and rSiC are the reflection coefficients of the light at the reflecting interface of DBR and SiC, respectively. They can be calculated by the transfer matrix method. $\delta = {{2\pi {n_{air}}{d_c}} / \lambda }$ is the phase change of the light propagating across the air cavity. N is the integer denoting the order of TPhP resonance.

In the mid-infrared band, the conductivity of graphene can be approximately described by Drude model [34]:

$$\sigma (\omega ) = \frac{{{e^2}{E_f}}}{{\pi {\hbar ^2}}} \cdot \frac{i}{{\omega + i{\tau ^{ - 1}}}},$$
where $\hbar$ is reduced Planck constant, e is the electron charge, $\omega$ is the resonant angular frequency, ${E_f}$ is the Fermi level, $\tau$ is the relaxation time, and $\tau$ is related to the loss and determined by the manufacturing process.

The plasmon mode of the graphene ribbon can be excited by the TM-polarized light. The dispersion relationship can be expressed as:

$${k_{GLSPP}} = \frac{{{\varepsilon _0}({\varepsilon _1} + {\varepsilon _2})}}{2} \cdot \frac{{2i\omega }}{\sigma },$$
where kGLSPP denotes the wave-vector of GLSPP, ${\varepsilon _1}$ and ${\varepsilon _2}$ are the permittivities of the dielectric above and below graphene, $\sigma $ is the conductivity of graphene and $\omega $ is the incident angular frequency, respectively. The resonance of graphene ribbons can be described by a Fabry-Perot model:
$$\Delta \varphi + {R_e}({k_{GLSPP}})w = m\pi ,$$

In the equation, $\Delta \varphi$ is the phase shift caused by reflection, w is the width of the graphene nanoribbons, m is the resonance order. By substituting Eq. (5) into Eq. (6), and then using $k = {{2\pi } / \lambda }$, the resonance wavelength can be obtained as follows:

$$\lambda = 2\pi c\sqrt {\frac{{{\varepsilon _0}{\hbar ^2}({\varepsilon _1} + {\varepsilon _2})}}{{{e^2}{E_f}}} \cdot \frac{w}{{m - {{\Delta \varphi } / \pi }}}} ,$$

Generally speaking, the method used to analyze the coupling of the system depends on the coupling strength [35,36]. In weakly coupled systems, the interference phenomenon is usually explained in terms of Fano interference. The structure proposed in our work belongs to a strong coupling system, and the coupling is analyzed by using two coupled harmonic oscillator model [37,38]:

$$\left( {\begin{array}{{cc}} {{E_{GLSPP}} + i\hbar {\Gamma _{GLSPP}}}&V\\ V&{{E_{TPhP}} + i\hbar {\Gamma _{TPhP}}} \end{array}} \right)\left( {\begin{array}{{c}} {{\alpha_G}}\\ {{\alpha_T}} \end{array}} \right) = E\left( {\begin{array}{{c}} {{\alpha_G}}\\ {{\alpha_T}} \end{array}} \right),$$
where ${E_{GLSPP}} = \hbar {\omega _{GLSPP}}$ and ${E_{TPhP}} = \hbar {\omega _{TPhP}}$ are the energies of GLSPP and TPhP modes. ${\Gamma _{GLSPP}}$ and ${\Gamma _{TPhP}}$ are the damping losses of the two modes. $E$ represents the energy of the coupled mode. ${|{{\alpha_G}} |^2}$ and ${|{{\alpha_T}} |^2}$ represent the relative weightings of GLSPP and TPhP modes in the coupled mode, where ${|{{\alpha_G}} |^2} + {|{{\alpha_T}} |^2} = 1$. V denotes GLSPP-TPhP interaction potential. When ${\omega _{GLSPP}} = {\omega _{TPhP}}$, the Rabi splitting energy is $\hbar \Omega = \sqrt {4{V^2} - {\hbar ^2}{{({\Gamma _{GLSPP}} - {\Gamma _{TPhP}})}^2}}$.

The eigenfrequency of the oscillator coupling mode can be described as [39,40]:

$${\omega _ \pm } = \frac{{{\omega _{TPhP}} + {\omega _{GLSPP}}}}{2} \pm \sqrt {{V^2} + {{(\frac{{{\omega _{TPhP}} - {\omega _{GLSPP}}}}{2})}^2}} .$$
where ${\omega _ \pm }$ represent the resonant angular frequencies of the coupled mode, ${\omega _{GLSPP}}$ and ${\omega _{TPhP}}$ are the resonant angular frequencies of GLSPP and TPhP modes, respectively.

3. Results and analysis

3.1 Performance of the components of the system

3.1.1 Absorption properties of the TPhP mode

We analyzed the absorption properties of each component of the composite system. First, if the graphene nanoribbons are removed, the GLSPP mode will not be excited. There is only one absorption peak in the absorption spectrum, which is the TPhP mode produced by DBR-air layer-SiC. Since the SiC material can effectively suppress the light transmission in the reststrahlen band, the incident light is reflected and trapped, and the absorption of the structure can be defined by $A = 1 - R - T$, where $T \approx 0$. Figure 2(a) shows the simulated absorption of the TPhP mode under normally incident light as a function of the cavity thickness dc and wavelength λ. The dashed line represents the position of the resonance peak calculated by Eq. (2). In this work, we will focus on the resonance properties in the reststrahlen band between the two solid white lines as shown in Fig. 2(a). As dc increases from zero, the resonance wavelength will red-shift, and the position of the absorption peak will change periodically, which corresponds to the different order N of the phase change in Eq. (3). The resonance conditions and near-field distributions of the structure at points A and B were studied. As shown in Fig. 2(b), when the thickness of the air layer is 8.50µm or 2.74µm, the resonance wavelength is the same (11.619µm). Using the transfer matrix method, the reflection coefficients on the interface of the SiC and the DBR were calculated, and they are ${r_{SiC}} ={-} 0.839 - 0.516i$, ${r_{DBR}} = 0.907 - 0.319i$, respectively. The phase changes are ${\varphi _{SiC}} ={-} 2.590$ and ${\varphi _{DBR}} ={-} 0.338$, respectively. For the point A, ${d_c} = 8.50\mu m$, the phase change caused by one round trip of light across the air cavity is $2\delta = 9.193$, so the total phase change is $\varphi = {\varphi _{SiC}} + {\varphi _{DBR}} + 2\delta = 6.27 \approx 1 \times 2\pi$. For the point B, ${d_c} = 2.74\mu m$, $2\delta = 2.962$, the total phase change is $\varphi = {\varphi _{SiC}} + {\varphi _{DBR}} + 2\delta = 0.03 \approx 0 \times 2\pi$. Both of them meet the TPhP resonance conditions and form the absorption peaks. Figures 2(c) and 2(d) show the total electric field distributions of the points A and B when the wavelength of the normally incident light is 11.619µm. The white lines in the figures are the interfaces of each layer of the structure. The electric field distribution reveals the standing wave pattern inside the structure. The energy of the incident light is mostly confined in the structure. Both structures have antinodes in the DBR and at the interface between the DBR and the air layer. The electric field intensity at the interface is stronger. For the point A, there is also an antinode and a node in the air layer, corresponding to N=1. For the point B, there is no antinode or node in the air layer, corresponding to N=0. Figure 2(e) shows the relationship between the resonance wavelength and thickness of the air layer when N=1. The circle is the simulation result, and the solid line represents the theoretical calculation result. Since the resonance wavelength of the TPhP mode is sensitive to the thickness of the air layer, adjusting the thickness of the air layer will help to dynamically adjust the resonance wavelength.

We should also point out that the period number of DBR affects the absorption of the TPhP mode. Increasing the period of DBR will decrease greatly intensity of the light reaching the air layer interface, and the absorption rate of the TPhP mode will decrease [2]. Besides, the increase of layer number will increase the difficulty of production. Therefore, under the premise of ensuring good performance, the number of periods of DBR is set to be 2.

3.1.2 Absorption properties of the GLSPP mode

It can be seen from Figs. 2(c) and 2(d) that once the TPhP mode is excited, there is an increase of electric field energy in the air layer and at the interface between the air layer and the DBR. In this case, the graphene nanoribbons are placed on the BaF2 layer of the DBR, which can excite the GLSPP mode. If the SiC layer is removed, the TPhP mode cannot be excited. Then incident light cannot pass through the DBR to reach the graphene nanoribbons, so the GLSPP mode will not be excited. In the absence of a SiC layer, in order to study the resonance properties of the GLSPP mode, we assume that the incident light is not incident from the Ge layer side, but the graphene nanoribbons side.

Figure 3(a) shows the relationship between the resonance wavelength and the Fermi level of the graphene nanoribbons. The solid dot is the simulation result, and the solid line is the result calculated by Eq. (7), where $m\textrm{ = }1$ and $\Delta \varphi = 0.325\pi$. Figure 3(b) shows the absorption spectrum of the graphene nanoribbons, when ${E_f} = 0.29eV$. The resonance wavelength is 11.619µm and the absorption rate is about 47%. The electric field distributions at λ=11.619µm are shown in Figs. 3(c) and 3(d). Figure 3(c) shows the total electric field distribution, and Fig. 3(d) shows the electric field distribution along the z-direction. It can be seen that the GLSPP is confined to graphene, which results in a significant absorption peak. The phase difference between the two ends of the graphene ribbon is π, which corresponds to m=1 resonance.

 figure: Fig. 3.

Fig. 3. (a) The resonance wavelength of the graphene nanoribbon as a function of the Fermi energy. (b) The absorption spectrum of the graphene nanoribbons, when Ef=0.29 eV. (c) The total electric field distribution of the graphene nanoribbon at λ=11.619µm. (d) The electric field distribution of the graphene nanoribbon along the z-direction at λ=11.619µm.

Download Full Size | PPT Slide | PDF

3.2 Coupling between the TPhP mode and the GLSPP mode

Through the analysis above, we can know that, when the thickness of the air layer is dc=8.5µm, the resonance wavelength of the TPhP mode is 11.619µm. When the Fermi level of the graphene is Ef = 0.29ev, the resonance wavelength of the GLSPP mode is also 11.619µm. These two modes have sufficient space and spectrum overlap. If they are excited simultaneously, they will couple strongly. Figure 4(a) shows the absorption spectrum when two modes coexist for dc=8.5µm and Ef = 0.29ev. The absorption peak at 11.619µm splits into two narrow-band absorption peaks, located at λ=11.329µm and λ=11.962µm, respectively, and the corresponding absorption rate reaches about 99.4% and 99.2%, respectively. They are neither the TPhP mode nor the GLSPP mode, but coupled mode. In this case, each resonance cannot be described individually but only as a part of the coupled system. Figures 4(b) and 4(c) show the electric field distributions of the composite structure at the incident wavelengths of λ=11.329µm and λ=11.962µm under the condition of strong coupling. The white solid lines are interfaces of each layer of the structure. It can be seen from the figures that most energies of the coupled mode are still concentrated inside the structure. There is one antinode and one node in the air cavity, which is similar to Fig. 2(c). The graphene nanoribbons are located rightly at the antinode, which forms strong resonance absorption. It can also be seen from the figures that the two branches of the coupled mode show nearly identical field profiles and two split modes cannot be viewed as two separate modes. When the detuning of the resonance frequency is zero, the energy separation between the modes is called Rabi splitting [41]. The Rabi splitting energy of this structure is 5.76meV.

 figure: Fig. 4.

Fig. 4. (a) The absorption spectrum of the TPhP-GLSPP coupled structure when Ef=0.29 eV and dc=8.5µm. (b) The electric field distribution of the coupled mode at λ=11.329µm. (c) The electric field distribution of the coupled mode at λ=11.962µm.

Download Full Size | PPT Slide | PDF

Figure 4(a) is compared with Fig. 2(b) and Fig. 3(b). When the two modes are not coupled, each mode cannot achieve perfect absorption. In the strong coupling state with zero detuning, the incident light excites the TPhP mode, and the graphene nanoribbons are rightly at the antinode. The GLSPP mode can also be excited and then interact strongly with TPhP to achieve strong light energy exchange, and form dual-band perfect absorption.

3.3 Dynamic modulation of coupling between the TPhP mode and the GLSPP mode

Figure 5(a) shows the absorption spectrum of the coupled mode as a function of the cavity thickness dc, where Ef = 0.29eV and the other parameters remain the same as those in Fig. 1. The solid line and the dashed line show the resonance wavelengths of the TPhP mode and the GLSPP mode when two modes are not coupled, and they are calculated by Eq. (2) and Eq. (7), respectively. They intersect at λ=11.619µm. When they are coupled, the new coupled mode exhibits avoided crossing characteristics near λ=11.619µm, and the Rabi splitting energy is 5.76meV. When dc is small, the left branch of the coupled mode is like the TPhP mode, and as the thickness increases, the GLSPP-like characteristics appear. As the thickness increases, the right branch of the coupled mode first shows GLSPP-like characteristics and then shows TPhP-like characteristics. Figure 5(b) shows the mixing fractions of GLSPP mode and TPhP mode of the coupled mode calculated according to Eq. (8) and Eq. (9). Taking the left branch as an example, smaller dc corresponds to larger ${|{{\alpha_T}} |^2}$ and smaller ${|{{\alpha_G}} |^2}$. In this case, the left branch comes mainly from TPhP mode. As dc increases, the proportion of GLSPP mode gradually increases. The zero detuning corresponds to a state with the same fraction (${|{{\alpha_T}} |^2} = {|{{\alpha_G}} |^2} = 0.5$). The change of the right branch is opposite to that of the left branch. In addition, the resonance wavelength of the coupled mode calculated analytically using Eq. (9) is represented by circle in Fig. 5(a). The analytical result is consistent with the simulation one.

 figure: Fig. 5.

Fig. 5. (a) The absorption spectrum of the coupled structure as a function of dc (Ef=0.29 eV). (b) The mixing fractions of GLSPP mode and TPhP mode as a function of dc (Ef=0.29 eV). (c) The absorption spectrum of the coupled structure as a function of Ef (dc=8.5µm). (d) The mixing fractions of GLSPP mode and TPhP mode as a function of Ef (dc=8.5µm). (e) The absorption spectra of the coupled structure when Ef and dc are changed simultaneously.

Download Full Size | PPT Slide | PDF

By changing the gate voltage of the graphene, the Fermi level of graphene can be adjusted. Figure 5(c) shows the absorption spectrum of the structure when the graphene Fermi level is changed (dc=8.5µm), and the other structure parameters remain the same as those in Fig. 1. The solid and dashed lines represent the theoretically calculated resonance wavelengths of the uncoupled GLSPP mode and TPhP mode, respectively. When Ef increases from 0.26eV to 0.35eV, the absorption spectrum exhibits anti-crossover characteristics, which is due to the strong coupling of the two modes. The new eigenmode wavelengths of the coupled mode are calculated by Eq. (9). They are depicted by the circle in Fig. 5(c) and are consistent with the numerical calculation result. Figure 5(d) shows the mixing fractions of GLSPP mode and TPhP mode of the coupled mode calculated using Eq. (8) and Eq. (9). Besides, when the Fermi level is very small, for example, Ef=0.1eV, the resonance wavelength of the GLSPP mode calculated by Eq. (7) is 19.799 µm. In this case, there is a large detuning between the GLSPP mode and the TPhP mode. Then only one absorption peak appears in the studied spectrum region and corresponds to the TPhP mode.

From the analysis above, it can be concluded that when the resonance wavelength detuning between the TPhP mode and the GLSPP mode is small, the strong coupling will occur and perfect dual-frequency absorption will be achieved. Since the resonance wavelengths of the TPhP mode and the GLSPP mode can be adjusted simultaneously, they can reach zero detuning at different wavelengths, and dual-frequency adjustable perfect absorption can be achieved in the entire SiC reststrahlen band. Figure 5(e) shows the absorption spectra of the composite structure when the thickness of the air cavity and the graphene Fermi level are adjusted simultaneously. As dc increases, the resonance wavelength of the TPhP mode will red-shift. In this case, by reducing the Fermi level of the graphene, the GLSPP mode is shifted to the long-wave direction to ensure that the two modes are zero-detuning state, thus obtaining strong coupling and high absorptivity. It can also be seen that the dual-frequency perfect absorption is very robust in this region.

4. Conclusion

In this paper, a structure that can generate the coupling of the TPhP mode and the GLSPP mode is proposed. The strong coupling of the two modes is studied numerically and theoretically. It is found that the TPhP-GLSPP mode coupling can achieve 5.76meV Rabi splitting energy and dual-frequency perfect absorption in the mid-infrared region. Moreover, the controllable dual-band perfect absorption can be realized by adjusting the thickness of the air layer and the Fermi level of graphene. Besides, by changing the Fermi level to shift the resonance wavelength of the graphene ribbon away from the studied band, the structure can be converted into a single-frequency absorber. Indeed, this coupled structure can achieve single-frequency or dual-frequency adjustable absorption, which can be applied in the coupled optoelectronic devices, such as sensors, filters and transmitters.

Funding

National Natural Science Foundation of China (61275117); Natural Science Foundation of Heilongjiang Province (F2018027, LH2019F047, LH2020F041).

Disclosures

The authors declare no conflicts of interest.

Data Availability

No data were generated or analyzed in the presented research.

References

1. I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018). [CrossRef]  

2. Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018). [CrossRef]  

3. Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017). [CrossRef]  

4. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012). [CrossRef]  

5. C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014). [CrossRef]  

6. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012). [CrossRef]  

7. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012). [CrossRef]  

8. B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015). [CrossRef]  

9. J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013). [CrossRef]  

10. Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014). [CrossRef]  

11. H. J. Li, L. L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016). [CrossRef]  

12. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017). [CrossRef]  

13. H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018). [CrossRef]  

14. C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018). [CrossRef]  

15. H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017). [CrossRef]  

16. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007). [CrossRef]  

17. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008). [CrossRef]  

18. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015). [CrossRef]  

19. A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019). [CrossRef]  

20. B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007). [CrossRef]  

21. H. Lu, X. T. Gan, B. H. Jia, D. Mao, and J. L. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016). [CrossRef]  

22. K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018). [CrossRef]  

23. J. M. S. S. Silva and M. I. Vasilevskiy, “Far-infrared Tamm polaritons in a microcavity with incorporated graphene sheet,” Opt. Mater. Express 9(1), 244–255 (2019). [CrossRef]  

24. A. M. Ahmed and A. Mehaney, “Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region,” Sci. Rep. 9(1), 6973 (2019). [CrossRef]  

25. G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013). [CrossRef]  

26. J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014). [CrossRef]  

27. J. Hu, W. Liu, W. Q. Xie, W. Zhang, E. X. Yao, Y. Zhang, and Q. W. Zhan, “Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system,” Opt. Lett. 44(22), 5642–5645 (2019). [CrossRef]  

28. K. Zhang, Y. Liu, F. Xia, S. X. Li, and W. J. Kong, “Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity,” Opt. Lett. 45(13), 3669–3672 (2020). [CrossRef]  

29. Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019). [CrossRef]  

30. D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017). [CrossRef]  

31. E. J. Prucha and E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

32. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980). [CrossRef]  

33. K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017). [CrossRef]  

34. L. P. Du, D. Y. Tang, and X. C. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014). [CrossRef]  

35. J. Hu, E. X. Yao, W. Q. Xie, W. Liu, D. M. Li, Y. H. Lu, and Q. W. Zhan, “Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure,” Opt. Express 27(13), 18642–18652 (2019). [CrossRef]  

36. X. L. Zhao, L. Zhu, C. Yuan, and J. Q. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41(23), 5470–5473 (2016). [CrossRef]  

37. J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002). [CrossRef]  

38. J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000). [CrossRef]  

39. V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67(8), 085311 (2003). [CrossRef]  

40. A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012). [CrossRef]  

41. P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015). [CrossRef]  

References

  • View by:

  1. I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
    [Crossref]
  2. Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
    [Crossref]
  3. Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
    [Crossref]
  4. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  5. C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014).
    [Crossref]
  6. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref]
  7. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [Crossref]
  8. B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
    [Crossref]
  9. J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
    [Crossref]
  10. Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref]
  11. H. J. Li, L. L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
    [Crossref]
  12. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref]
  13. H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
    [Crossref]
  14. C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
    [Crossref]
  15. H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
    [Crossref]
  16. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
    [Crossref]
  17. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
    [Crossref]
  18. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
    [Crossref]
  19. A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019).
    [Crossref]
  20. B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
    [Crossref]
  21. H. Lu, X. T. Gan, B. H. Jia, D. Mao, and J. L. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
    [Crossref]
  22. K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
    [Crossref]
  23. J. M. S. S. Silva and M. I. Vasilevskiy, “Far-infrared Tamm polaritons in a microcavity with incorporated graphene sheet,” Opt. Mater. Express 9(1), 244–255 (2019).
    [Crossref]
  24. A. M. Ahmed and A. Mehaney, “Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region,” Sci. Rep. 9(1), 6973 (2019).
    [Crossref]
  25. G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
    [Crossref]
  26. J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
    [Crossref]
  27. J. Hu, W. Liu, W. Q. Xie, W. Zhang, E. X. Yao, Y. Zhang, and Q. W. Zhan, “Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system,” Opt. Lett. 44(22), 5642–5645 (2019).
    [Crossref]
  28. K. Zhang, Y. Liu, F. Xia, S. X. Li, and W. J. Kong, “Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity,” Opt. Lett. 45(13), 3669–3672 (2020).
    [Crossref]
  29. Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
    [Crossref]
  30. D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
    [Crossref]
  31. E. J. Prucha and E. D. Palik, Handbook of optical constants of solids (Academic, 1998).
  32. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
    [Crossref]
  33. K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
    [Crossref]
  34. L. P. Du, D. Y. Tang, and X. C. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014).
    [Crossref]
  35. J. Hu, E. X. Yao, W. Q. Xie, W. Liu, D. M. Li, Y. H. Lu, and Q. W. Zhan, “Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure,” Opt. Express 27(13), 18642–18652 (2019).
    [Crossref]
  36. X. L. Zhao, L. Zhu, C. Yuan, and J. Q. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41(23), 5470–5473 (2016).
    [Crossref]
  37. J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002).
    [Crossref]
  38. J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000).
    [Crossref]
  39. V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67(8), 085311 (2003).
    [Crossref]
  40. A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
    [Crossref]
  41. P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]

2020 (1)

2019 (6)

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

J. Hu, E. X. Yao, W. Q. Xie, W. Liu, D. M. Li, Y. H. Lu, and Q. W. Zhan, “Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure,” Opt. Express 27(13), 18642–18652 (2019).
[Crossref]

A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019).
[Crossref]

J. M. S. S. Silva and M. I. Vasilevskiy, “Far-infrared Tamm polaritons in a microcavity with incorporated graphene sheet,” Opt. Mater. Express 9(1), 244–255 (2019).
[Crossref]

A. M. Ahmed and A. Mehaney, “Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region,” Sci. Rep. 9(1), 6973 (2019).
[Crossref]

J. Hu, W. Liu, W. Q. Xie, W. Zhang, E. X. Yao, Y. Zhang, and Q. W. Zhan, “Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system,” Opt. Lett. 44(22), 5642–5645 (2019).
[Crossref]

2018 (5)

K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
[Crossref]

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

2017 (5)

H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

2016 (3)

2015 (3)

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

2014 (4)

L. P. Du, D. Y. Tang, and X. C. Yuan, “Edge-reflection phase directed plasmonic resonances on graphene nano-structures,” Opt. Express 22(19), 22689–22698 (2014).
[Crossref]

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014).
[Crossref]

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

2013 (2)

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

2012 (4)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]

2008 (1)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

2007 (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

2003 (1)

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67(8), 085311 (2003).
[Crossref]

2002 (1)

J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002).
[Crossref]

2000 (1)

J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Abajo, F. J. G.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Abajo, F. J. G. D.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Agranovich, V. M.

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67(8), 085311 (2003).
[Crossref]

Ahmed, A. M.

A. M. Ahmed and A. Mehaney, “Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region,” Sci. Rep. 9(1), 6973 (2019).
[Crossref]

Aizin, G. R.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Ajayan, P. M.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Allen, S. J.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Allerman, A. A.

J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002).
[Crossref]

Altug, H.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Amthor, M.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Barnes, W. L.

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Baumann, V.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Bethke, D.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Borri, P.

J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000).
[Crossref]

Boucherif, A.

A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019).
[Crossref]

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Caldwell, J. D.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Chan, W. M.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Chang, Y. C.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014).
[Crossref]

Chen, K. P.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Cheng, Q.

K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
[Crossref]

Choi, D. G.

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Choi, J. H.

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Clark, J. K.

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Cui, T. J.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Daiguji, H.

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

Dao, T. D.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Delaunay, J. J.

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

Dickerson, J. H.

J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002).
[Crossref]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Du, L. P.

Dyer, G. C.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Emmerling, M.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Fang, Z. Y.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Fitzgerald, J. M.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Fréchette, L. G.

A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019).
[Crossref]

Gan, X. T.

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Gessler, J.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Giannini, V.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Glembocki, O. J.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Gordon, R. J.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]

Grine, A. D.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Guo, C. C.

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

Halas, N. J.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Ho, Y. L.

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

Höfling, S.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Hu, J.

Huang, Y.

Hvam, J. M.

J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000).
[Crossref]

Hwang, I.

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Ishii, S.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Jensen, J. R.

J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000).
[Crossref]

Jeon, S.

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Jia, B. H.

Juneau Fecteau, A.

A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019).
[Crossref]

Jung, J. Y.

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kalitteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Kamp, M.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Kevek, J. W.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Kong, W. J.

Langbein, W.

J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000).
[Crossref]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Lee, B. J.

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

Lee, J.

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Li, B.

K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
[Crossref]

Li, D. M.

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Li, H. J.

H. J. Li, L. L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

Li, K.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Li, S. X.

Li, X. F.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Lidzey, D. G.

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67(8), 085311 (2003).
[Crossref]

Limaj, O.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lin, Q.

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Litinskaia, M.

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67(8), 085311 (2003).
[Crossref]

Liu, C. H.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014).
[Crossref]

Liu, G. D.

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

Liu, J. Q.

Liu, K.

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

Liu, W.

Liu, Y.

Liu, Z.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Lu, H.

Lu, L.

K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
[Crossref]

Lu, Y. H.

Ma, H. F.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Maier, S. A.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Manolatou, C.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Mao, D.

McEuen, P. L.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Mehaney, A.

A. M. Ahmed and A. Mehaney, “Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region,” Sci. Rep. 9(1), 6973 (2019).
[Crossref]

Mendez, E. E.

J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002).
[Crossref]

Meng, H. Y.

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Nagao, T.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Nene, P.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Nordlander, P.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Norris, T. B.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Palik, E. D.

E. J. Prucha and E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

Pankin, P. S.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Prior, Y.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]

Prucha, E. J.

E. J. Prucha and E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

Pruneri, V.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Qin, S. Q.

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

Qing, Y. M.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rana, F.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Reno, J. L.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Rodrigo, D.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Salomon, A.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Savin, R.

A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019).
[Crossref]

Schlather, A.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Schneider, C.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Seideman, T.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Shaner, E. A.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Silva, J. M. S. S.

Son, J. K.

J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002).
[Crossref]

Song, J.

K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
[Crossref]

Strait, J. H.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Sukharev, M.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]

Sun, M. G.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Tang, D. Y.

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Timofeev, I. V.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Tittl, A.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Tiwari, S.

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Torma, P.

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Vasilevskiy, M. I.

Vilquin, B.

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Wang, L. L.

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

Wang, Y. M.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Wang, Z. Y.

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

Wen, S. C.

Winkler, K.

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

Xia, F.

Xia, S. X.

Xiao, X. F.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Xie, W. Q.

Xu, W.

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

Xue, X. X.

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yang, Z. Y.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yao, E. X.

Yao, J. Q.

Yokoyama, T.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yu, J.

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Yu, S.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Yuan, C.

Yuan, X. C.

Yuan, X. D.

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

Zhai, X.

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

H. Y. Meng, L. L. Wang, G. D. Liu, X. X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

Zhan, Q. W.

Zhang, C.

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

Zhang, J. F.

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

Zhang, K.

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Zhang, W.

Zhang, Y.

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

Zhao, J. L.

Zhao, X. L.

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Zhong, Z.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014).
[Crossref]

Zhou, K.

K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
[Crossref]

Zhu, L.

Zhu, X.

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Zhu, Z. H.

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

ACS Omega (1)

K. Li, J. M. Fitzgerald, X. F. Xiao, J. D. Caldwell, C. Zhang, S. A. Maier, X. F. Li, and V. Giannini, “Graphene Plasmon Cavities Made with Silicon Carbide,” ACS Omega 2(7), 3640–3646 (2017).
[Crossref]

ACS Photonics (4)

I. Hwang, J. Yu, J. Lee, J. H. Choi, D. G. Choi, S. Jeon, J. Lee, and J. Y. Jung, “Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals,” ACS Photonics 5(9), 3492–3498 (2018).
[Crossref]

Z. Y. Wang, J. K. Clark, Y. L. Ho, B. Vilquin, H. Daiguji, and J. J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

H. Y. Meng, X. X. Xue, Q. Lin, G. D. Liu, X. Zhai, and L. L. Wang, “Tunable and multi-channel perfect absorber based on graphene at mid-infrared region,” Appl. Phys. Express 11(5), 052002 (2018).
[Crossref]

Appl. Phys. Lett. (6)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

A. Juneau Fecteau, R. Savin, A. Boucherif, and L. G. Fréchette, “Tamm phonon-polaritons: Localized states from phonon-light interactions,” Appl. Phys. Lett. 114(14), 141101 (2019).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

J. H. Dickerson, J. K. Son, E. E. Mendez, and A. A. Allerman, “Electric-field tuning of the Rabi splitting in a superlattice-embedded microcavity,” Appl. Phys. Lett. 81(5), 803–805 (2002).
[Crossref]

J. R. Jensen, P. Borri, W. Langbein, and J. M. Hvam, “Ultranarrow polaritons in a semiconductor microcavity,” Appl. Phys. Lett. 76(22), 3262–3264 (2000).
[Crossref]

J. Gessler, V. Baumann, M. Emmerling, M. Amthor, K. Winkler, S. Höfling, C. Schneider, and M. Kamp, “Electro optical tuning of Tamm-plasmon exciton-polaritons,” Appl. Phys. Lett. 105(18), 181107 (2014).
[Crossref]

J. Appl. Phys. (1)

K. Zhou, L. Lu, J. Song, B. Li, and Q. Cheng, “Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure,” J. Appl. Phys. 124(12), 123102 (2018).
[Crossref]

J. Heat Transfer (1)

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Light: Sci. Appl. (1)

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Nano Lett. (1)

Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, P. M. Ajayan, F. J. G. D. Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Nanomaterials (1)

C. C. Guo, J. F. Zhang, W. Xu, K. Liu, X. D. Yuan, S. Q. Qin, and Z. H. Zhu, “Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications,” Nanomaterials 8(12), 1033 (2018).
[Crossref]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Nat. Nanotechnol. (1)

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9(4), 273–278 (2014).
[Crossref]

Nat. Photonics (1)

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Nature (2)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. B (3)

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67(8), 085311 (2003).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

J. H. Strait, P. Nene, W. M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Phys. Rev. Lett. (1)

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]

Rep. Prog. Phys. (1)

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Sci. Rep. (2)

A. M. Ahmed and A. Mehaney, “Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region,” Sci. Rep. 9(1), 6973 (2019).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

Other (1)

E. J. Prucha and E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

Data Availability

No data were generated or analyzed in the presented research.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a)Schematic of the proposed TPhP-GLSPP coupled structure. (b) Side view of the coupled structure. (c) The Reflection spectrum of the DBR structure under TM-polarized normal incidence. (d) The dependence of the real part and the imaginary part of the permittivity of SiC on the wavelength. (e) The 2D view of the DBR-air layer-SiC structure used to generate TPhP.
Fig. 2.
Fig. 2. (a) The simulated absorption varying with light wavelength and cavity thickness dc under normally incident light. The three dashed curves indicate different orders of the TPhP mode. (b) The absorption spectra for dc=8.50µm and dc=2.74µm. (c) The electric field distributions of A (dc=8.50µm, λ=11.619µm). (d) The electric field distributions of B (dc = 2.74µm, λ=11.619µm). (e) The relationship between the resonance wavelength and the air cavity thickness.
Fig. 3.
Fig. 3. (a) The resonance wavelength of the graphene nanoribbon as a function of the Fermi energy. (b) The absorption spectrum of the graphene nanoribbons, when Ef=0.29 eV. (c) The total electric field distribution of the graphene nanoribbon at λ=11.619µm. (d) The electric field distribution of the graphene nanoribbon along the z-direction at λ=11.619µm.
Fig. 4.
Fig. 4. (a) The absorption spectrum of the TPhP-GLSPP coupled structure when Ef=0.29 eV and dc=8.5µm. (b) The electric field distribution of the coupled mode at λ=11.329µm. (c) The electric field distribution of the coupled mode at λ=11.962µm.
Fig. 5.
Fig. 5. (a) The absorption spectrum of the coupled structure as a function of dc (Ef=0.29 eV). (b) The mixing fractions of GLSPP mode and TPhP mode as a function of dc (Ef=0.29 eV). (c) The absorption spectrum of the coupled structure as a function of Ef (dc=8.5µm). (d) The mixing fractions of GLSPP mode and TPhP mode as a function of Ef (dc=8.5µm). (e) The absorption spectra of the coupled structure when Ef and dc are changed simultaneously.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

$$\varepsilon (\omega ) = {\varepsilon _\infty }(1 + \frac{{\omega _{LO}^2 - \omega _{TO}^2}}{{\omega _{TO}^2 - {\omega ^2} - i\gamma \omega }}),$$
$${r_{DBR}}{r_{SiC}}\textrm{exp} (2i\delta ) = 1,$$
$$Arg[{r_{DBR}}{r_{SiC}}\textrm{exp} (2i\delta )] \approx 2N\pi ,$$
$$\sigma (\omega ) = \frac{{{e^2}{E_f}}}{{\pi {\hbar ^2}}} \cdot \frac{i}{{\omega + i{\tau ^{ - 1}}}},$$
$${k_{GLSPP}} = \frac{{{\varepsilon _0}({\varepsilon _1} + {\varepsilon _2})}}{2} \cdot \frac{{2i\omega }}{\sigma },$$
$$\Delta \varphi + {R_e}({k_{GLSPP}})w = m\pi ,$$
$$\lambda = 2\pi c\sqrt {\frac{{{\varepsilon _0}{\hbar ^2}({\varepsilon _1} + {\varepsilon _2})}}{{{e^2}{E_f}}} \cdot \frac{w}{{m - {{\Delta \varphi } / \pi }}}} ,$$
$$\left( {\begin{array}{{cc}} {{E_{GLSPP}} + i\hbar {\Gamma _{GLSPP}}}&V\\ V&{{E_{TPhP}} + i\hbar {\Gamma _{TPhP}}} \end{array}} \right)\left( {\begin{array}{{c}} {{\alpha_G}}\\ {{\alpha_T}} \end{array}} \right) = E\left( {\begin{array}{{c}} {{\alpha_G}}\\ {{\alpha_T}} \end{array}} \right),$$
$${\omega _ \pm } = \frac{{{\omega _{TPhP}} + {\omega _{GLSPP}}}}{2} \pm \sqrt {{V^2} + {{(\frac{{{\omega _{TPhP}} - {\omega _{GLSPP}}}}{2})}^2}} .$$

Metrics