S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
Jingjing Liu, Cheng Zhang, Zhen Zhang, Jingya Wang, Xiuwei Fan, Jie Liu, and Liangbi Su, “1886-1886-nm mode-locked and wavelength tunable Tm-doped CaF2 lasers,” Opt. Lett. 44(1), 134–137 (2019).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
A. Sottile, E. Damiano, M. Rabe, R. Bertram, D. Klimm, and M. Tonelli, “Widely tunable, efficient 2 µm in monocrystalline Tm3+:SrF2,” Opt. Express 26(5), 5368–5380 (2018).
[Crossref]
Z. Zhang, X. S. Guo, J. Y. Wang, C. Zhang, J. Liu, and L. B. Su, “High efficiency 2 µm continuous-wave laser in laser diode-pumped Tm3+, La3+:CaF2 single crystal,” Opt. Lett. 43(17), 4300–4303 (2018).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
F. Cornacchia, A. Toncelli, and M. Tonelli, “2 µm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[Crossref]
J. W. Shen, B. Wu, and Y. H. Shen, “High power CW laser operation with a Nd:YAG single-crystal fiber growth by LHPG method,” Laser Phys. 19(10), 2031–2034 (2009).
[Crossref]
X. Cheng, F. Chen, G. Zhao, and J. Xu, “High-efficiency, high-power, diode-pumped continuus-wave Tm:YAlO3 slab lasers,” Appl. Phys. B: Lasers Opt. 97(3), 639–643 (2009).
[Crossref]
F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+: spectroscopy and diode-pumped laser experiments,” Appl. Phys. B: Lasers Opt. 96(2-3), 363–368 (2009).
[Crossref]
F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]
Y. Ju, C. Wu, Z. Wang, Y. Li, and Y. Wang, “High-efficiency composite Tm:YAG laser,” Laser Phys. 18(11), 1316–1318 (2008).
[Crossref]
L. Braescu and T. Duffar, “Effect of buoyancy and Marangoni forces on the dopant distribution in a single crystal fiber grown from the melt by edge-defined film -fed growth (EFG) method,” J. Cryst. Growth 310(2), 484–489 (2008).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
A. S. S. de Camargo, M. R. B. Andreeta, A. C. Hernandes, and L. A. O. Nunes, “1.8 µm emission and excited state absorption in LHPG grown Gd0.8La0.2VO4:Tm3+ single crystal fibers for miniature lasers,” Opt. Mater. (Amsterdam, Neth.) 28(5), 551–555 (2006).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
V. Petit, L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B: Lasers Opt. 78(6), 681–684 (2004).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussel, “Judd-Ofeld analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]
L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal-growth of dislocation-free LiNbO3 single-crystals by micro-pulling-down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]
D. H. Yoon and T. Fukuda, “Characterization of LiNbO3 micro single-crystals growth by the micro-pulling-down method,” J. Cryst. Growth 144(3-4), 201–206 (1994).
[Crossref]
T. Taira, A. Muckai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip laser,” Opt. Lett. 16(24), 1955–1957 (1991).
[Crossref]
P. J. D. Lindan and M. J. Gillan, “A molecular-dynamics study of the thermal-conductivity of CaF2 and UO2,” J. Phys.: Condens. Matter 3(22), 3929–3939 (1991).
[Crossref]
S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8(4), 726–740 (1991).
[Crossref]
R. S. Feigelson, “Opportunities for research on single-crystal fibers,” Mater. Sci. Eng., B 1(1), 67–75 (1988).
[Crossref]
M. Digonnet, C. Gaeta, and H. Shaw, “1.064 µm and 1.32 µm Nd:YAG single-crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]
R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24(6), 1102–1107 (1985).
[Crossref]
M. M. Fejer, G. A. Magel, and R. l. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Appl. Opt. 24(15), 2362–2368 (1985).
[Crossref]
Y. Mimura and C. Ota, “Transmission of CO2-laser power by single-crystal CsBr fibers,” Appl. Phys. Lett. 40(9), 773–775 (1982).
[Crossref]
Y. Mimura, Y. Okamura, Y. Komazawa, and C. Ota, “CsBr crystalline fiber for visible and infrared transmission,” JPN. J. Appl. Phys. 20(1), L17–L18 (1981).
[Crossref]
N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite galsses,” Chem. Phys. Lett. 49(1), 49–53 (1977).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
H. E. Labelle and A. I. Mlavsky, “Growth of controlled profile crystals from melt: Part I- sapphire filaments,” Mater. Res. Bull. 6(7), 571–579 (1971).
[Crossref]
R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]
D. N. Batchelder and R. O. Simmons, “Lattice constants and thermal expansivities of silicon and of calcium fluoride between 6° and 322° K,” J. Chem. Phys. 41(8), 2324–2329 (1964).
[Crossref]
U. Ranon and A. Yaniv, “Charge compensation by interstitial F- ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9(1), 17–19 (1964).
[Crossref]
R. C. Duncan and Z. J. Kiss, “Continuously operating CaF2:Tm2+ optical maser,” Appl. Phys. Lett. 3(2), 23–24 (1963).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
A. S. S. de Camargo, M. R. B. Andreeta, A. C. Hernandes, and L. A. O. Nunes, “1.8 µm emission and excited state absorption in LHPG grown Gd0.8La0.2VO4:Tm3+ single crystal fibers for miniature lasers,” Opt. Mater. (Amsterdam, Neth.) 28(5), 551–555 (2006).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
D. N. Batchelder and R. O. Simmons, “Lattice constants and thermal expansivities of silicon and of calcium fluoride between 6° and 322° K,” J. Chem. Phys. 41(8), 2324–2329 (1964).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite galsses,” Chem. Phys. Lett. 49(1), 49–53 (1977).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
L. Braescu and T. Duffar, “Effect of buoyancy and Marangoni forces on the dopant distribution in a single crystal fiber grown from the melt by edge-defined film -fed growth (EFG) method,” J. Cryst. Growth 310(2), 484–489 (2008).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
P. A. Budni, L. A. pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
V. Petit, L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B: Lasers Opt. 78(6), 681–684 (2004).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
X. Cheng, F. Chen, G. Zhao, and J. Xu, “High-efficiency, high-power, diode-pumped continuus-wave Tm:YAlO3 slab lasers,” Appl. Phys. B: Lasers Opt. 97(3), 639–643 (2009).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
X. Cheng, F. Chen, G. Zhao, and J. Xu, “High-efficiency, high-power, diode-pumped continuus-wave Tm:YAlO3 slab lasers,” Appl. Phys. B: Lasers Opt. 97(3), 639–643 (2009).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
P. A. Budni, L. A. pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
[Crossref]
F. Cornacchia, A. Toncelli, and M. Tonelli, “2 µm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[Crossref]
F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+: spectroscopy and diode-pumped laser experiments,” Appl. Phys. B: Lasers Opt. 96(2-3), 363–368 (2009).
[Crossref]
F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]
G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-µm Tm:BaY2F8 laser,” Opt. Lett. 30(8), 854–856 (2005).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
A. S. S. de Camargo, M. R. B. Andreeta, A. C. Hernandes, and L. A. O. Nunes, “1.8 µm emission and excited state absorption in LHPG grown Gd0.8La0.2VO4:Tm3+ single crystal fibers for miniature lasers,” Opt. Mater. (Amsterdam, Neth.) 28(5), 551–555 (2006).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+: spectroscopy and diode-pumped laser experiments,” Appl. Phys. B: Lasers Opt. 96(2-3), 363–368 (2009).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
M. Digonnet, C. Gaeta, and H. Shaw, “1.064 µm and 1.32 µm Nd:YAG single-crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
V. Petit, L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B: Lasers Opt. 78(6), 681–684 (2004).
[Crossref]
L. Braescu and T. Duffar, “Effect of buoyancy and Marangoni forces on the dopant distribution in a single crystal fiber grown from the melt by edge-defined film -fed growth (EFG) method,” J. Cryst. Growth 310(2), 484–489 (2008).
[Crossref]
R. C. Duncan and Z. J. Kiss, “Continuously operating CaF2:Tm2+ optical maser,” Appl. Phys. Lett. 3(2), 23–24 (1963).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
R. S. Feigelson, “Opportunities for research on single-crystal fibers,” Mater. Sci. Eng., B 1(1), 67–75 (1988).
[Crossref]
R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24(6), 1102–1107 (1985).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
D. H. Yoon and T. Fukuda, “Characterization of LiNbO3 micro single-crystals growth by the micro-pulling-down method,” J. Cryst. Growth 144(3-4), 201–206 (1994).
[Crossref]
D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal-growth of dislocation-free LiNbO3 single-crystals by micro-pulling-down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]
M. Digonnet, C. Gaeta, and H. Shaw, “1.064 µm and 1.32 µm Nd:YAG single-crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
P. J. D. Lindan and M. J. Gillan, “A molecular-dynamics study of the thermal-conductivity of CaF2 and UO2,” J. Phys.: Condens. Matter 3(22), 3929–3939 (1991).
[Crossref]
L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussel, “Judd-Ofeld analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
A. S. S. de Camargo, M. R. B. Andreeta, A. C. Hernandes, and L. A. O. Nunes, “1.8 µm emission and excited state absorption in LHPG grown Gd0.8La0.2VO4:Tm3+ single crystal fibers for miniature lasers,” Opt. Mater. (Amsterdam, Neth.) 28(5), 551–555 (2006).
[Crossref]
D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussel, “Judd-Ofeld analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
Y. Ju, C. Wu, Z. Wang, Y. Li, and Y. Wang, “High-efficiency composite Tm:YAG laser,” Laser Phys. 18(11), 1316–1318 (2008).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]
R. C. Duncan and Z. J. Kiss, “Continuously operating CaF2:Tm2+ optical maser,” Appl. Phys. Lett. 3(2), 23–24 (1963).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
Y. Mimura, Y. Okamura, Y. Komazawa, and C. Ota, “CsBr crystalline fiber for visible and infrared transmission,” JPN. J. Appl. Phys. 20(1), L17–L18 (1981).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24(6), 1102–1107 (1985).
[Crossref]
H. E. Labelle and A. I. Mlavsky, “Growth of controlled profile crystals from melt: Part I- sapphire filaments,” Mater. Res. Bull. 6(7), 571–579 (1971).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
Y. Li, K. Miller, E. G. Johnson, C. D. Nie, S. Bera, J. A. Harrington, and R. Shori, “Lasing characteristics of Ho:YAG single crystal fiber,” Opt. Express 24(9), 9751–9756 (2016).
[Crossref]
Y. Ju, C. Wu, Z. Wang, Y. Li, and Y. Wang, “High-efficiency composite Tm:YAG laser,” Laser Phys. 18(11), 1316–1318 (2008).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
P. J. D. Lindan and M. J. Gillan, “A molecular-dynamics study of the thermal-conductivity of CaF2 and UO2,” J. Phys.: Condens. Matter 3(22), 3929–3939 (1991).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
Z. Zhang, X. S. Guo, J. Y. Wang, C. Zhang, J. Liu, and L. B. Su, “High efficiency 2 µm continuous-wave laser in laser diode-pumped Tm3+, La3+:CaF2 single crystal,” Opt. Lett. 43(17), 4300–4303 (2018).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
V. Petit, L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B: Lasers Opt. 78(6), 681–684 (2004).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
Y. Mimura and C. Ota, “Transmission of CO2-laser power by single-crystal CsBr fibers,” Appl. Phys. Lett. 40(9), 773–775 (1982).
[Crossref]
Y. Mimura, Y. Okamura, Y. Komazawa, and C. Ota, “CsBr crystalline fiber for visible and infrared transmission,” JPN. J. Appl. Phys. 20(1), L17–L18 (1981).
[Crossref]
H. E. Labelle and A. I. Mlavsky, “Growth of controlled profile crystals from melt: Part I- sapphire filaments,” Mater. Res. Bull. 6(7), 571–579 (1971).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
V. Petit, L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B: Lasers Opt. 78(6), 681–684 (2004).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
A. S. S. de Camargo, M. R. B. Andreeta, A. C. Hernandes, and L. A. O. Nunes, “1.8 µm emission and excited state absorption in LHPG grown Gd0.8La0.2VO4:Tm3+ single crystal fibers for miniature lasers,” Opt. Mater. (Amsterdam, Neth.) 28(5), 551–555 (2006).
[Crossref]
D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal-growth of dislocation-free LiNbO3 single-crystals by micro-pulling-down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]
Y. Mimura, Y. Okamura, Y. Komazawa, and C. Ota, “CsBr crystalline fiber for visible and infrared transmission,” JPN. J. Appl. Phys. 20(1), L17–L18 (1981).
[Crossref]
Y. Mimura and C. Ota, “Transmission of CO2-laser power by single-crystal CsBr fibers,” Appl. Phys. Lett. 40(9), 773–775 (1982).
[Crossref]
Y. Mimura, Y. Okamura, Y. Komazawa, and C. Ota, “CsBr crystalline fiber for visible and infrared transmission,” JPN. J. Appl. Phys. 20(1), L17–L18 (1981).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]
G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-µm Tm:BaY2F8 laser,” Opt. Lett. 30(8), 854–856 (2005).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
V. Petit, L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B: Lasers Opt. 78(6), 681–684 (2004).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]
L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]
U. Ranon and A. Yaniv, “Charge compensation by interstitial F- ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9(1), 17–19 (1964).
[Crossref]
N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite galsses,” Chem. Phys. Lett. 49(1), 49–53 (1977).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24(6), 1102–1107 (1985).
[Crossref]
D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussel, “Judd-Ofeld analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
M. Digonnet, C. Gaeta, and H. Shaw, “1.064 µm and 1.32 µm Nd:YAG single-crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]
J. W. Shen, B. Wu, and Y. H. Shen, “High power CW laser operation with a Nd:YAG single-crystal fiber growth by LHPG method,” Laser Phys. 19(10), 2031–2034 (2009).
[Crossref]
J. W. Shen, B. Wu, and Y. H. Shen, “High power CW laser operation with a Nd:YAG single-crystal fiber growth by LHPG method,” Laser Phys. 19(10), 2031–2034 (2009).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
D. N. Batchelder and R. O. Simmons, “Lattice constants and thermal expansivities of silicon and of calcium fluoride between 6° and 322° K,” J. Chem. Phys. 41(8), 2324–2329 (1964).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite galsses,” Chem. Phys. Lett. 49(1), 49–53 (1977).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
Z. Zhang, X. S. Guo, J. Y. Wang, C. Zhang, J. Liu, and L. B. Su, “High efficiency 2 µm continuous-wave laser in laser diode-pumped Tm3+, La3+:CaF2 single crystal,” Opt. Lett. 43(17), 4300–4303 (2018).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
F. Cornacchia, A. Toncelli, and M. Tonelli, “2 µm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[Crossref]
G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-µm Tm:BaY2F8 laser,” Opt. Lett. 30(8), 854–856 (2005).
[Crossref]
A. Sottile, E. Damiano, M. Rabe, R. Bertram, D. Klimm, and M. Tonelli, “Widely tunable, efficient 2 µm in monocrystalline Tm3+:SrF2,” Opt. Express 26(5), 5368–5380 (2018).
[Crossref]
F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+: spectroscopy and diode-pumped laser experiments,” Appl. Phys. B: Lasers Opt. 96(2-3), 363–368 (2009).
[Crossref]
F. Cornacchia, A. Toncelli, and M. Tonelli, “2 µm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[Crossref]
F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]
G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-µm Tm:BaY2F8 laser,” Opt. Lett. 30(8), 854–856 (2005).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussel, “Judd-Ofeld analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
Y. Ju, C. Wu, Z. Wang, Y. Li, and Y. Wang, “High-efficiency composite Tm:YAG laser,” Laser Phys. 18(11), 1316–1318 (2008).
[Crossref]
Y. Ju, C. Wu, Z. Wang, Y. Li, and Y. Wang, “High-efficiency composite Tm:YAG laser,” Laser Phys. 18(11), 1316–1318 (2008).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
J. W. Shen, B. Wu, and Y. H. Shen, “High power CW laser operation with a Nd:YAG single-crystal fiber growth by LHPG method,” Laser Phys. 19(10), 2031–2034 (2009).
[Crossref]
Y. Ju, C. Wu, Z. Wang, Y. Li, and Y. Wang, “High-efficiency composite Tm:YAG laser,” Laser Phys. 18(11), 1316–1318 (2008).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
X. Cheng, F. Chen, G. Zhao, and J. Xu, “High-efficiency, high-power, diode-pumped continuus-wave Tm:YAlO3 slab lasers,” Appl. Phys. B: Lasers Opt. 97(3), 639–643 (2009).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
U. Ranon and A. Yaniv, “Charge compensation by interstitial F- ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9(1), 17–19 (1964).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal-growth of dislocation-free LiNbO3 single-crystals by micro-pulling-down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]
D. H. Yoon and T. Fukuda, “Characterization of LiNbO3 micro single-crystals growth by the micro-pulling-down method,” J. Cryst. Growth 144(3-4), 201–206 (1994).
[Crossref]
D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal-growth of dislocation-free LiNbO3 single-crystals by micro-pulling-down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussel, “Judd-Ofeld analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
Z. Zhang, X. S. Guo, J. Y. Wang, C. Zhang, J. Liu, and L. B. Su, “High efficiency 2 µm continuous-wave laser in laser diode-pumped Tm3+, La3+:CaF2 single crystal,” Opt. Lett. 43(17), 4300–4303 (2018).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
X. Cheng, F. Chen, G. Zhao, and J. Xu, “High-efficiency, high-power, diode-pumped continuus-wave Tm:YAlO3 slab lasers,” Appl. Phys. B: Lasers Opt. 97(3), 639–643 (2009).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref]
R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor .2. Flight-test results at 2 and 10 µm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref]
M. M. Fejer, G. A. Magel, and R. l. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Appl. Opt. 24(15), 2362–2368 (1985).
[Crossref]
V. Petit, L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B: Lasers Opt. 78(6), 681–684 (2004).
[Crossref]
X. Cheng, F. Chen, G. Zhao, and J. Xu, “High-efficiency, high-power, diode-pumped continuus-wave Tm:YAlO3 slab lasers,” Appl. Phys. B: Lasers Opt. 97(3), 639–643 (2009).
[Crossref]
F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+: spectroscopy and diode-pumped laser experiments,” Appl. Phys. B: Lasers Opt. 96(2-3), 363–368 (2009).
[Crossref]
R. C. Duncan and Z. J. Kiss, “Continuously operating CaF2:Tm2+ optical maser,” Appl. Phys. Lett. 3(2), 23–24 (1963).
[Crossref]
R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett. 26(6), 318–320 (1975).
[Crossref]
Y. Mimura and C. Ota, “Transmission of CO2-laser power by single-crystal CsBr fibers,” Appl. Phys. Lett. 40(9), 773–775 (1982).
[Crossref]
N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite galsses,” Chem. Phys. Lett. 49(1), 49–53 (1977).
[Crossref]
S. Shijia, W. Qi, C. Weidong, L. Fei, Z. Degao, H. Chen, Z. Lizhen, L. Zhoubin, and T. Bing, “Li2Gd4(MO4)7 crystal preparation and spectral properties applied to 2.0 µm lasers,” CrystEngComm 20(41), 6472–6481 (2018).
[Crossref]
F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]
V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]
X. Junhua, Z. Qiang, Z. Yixi, L. Xiaofeng, G. Miaojia, Z. Bin, Y. Rong, and Q. Jianrong, “Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics,” J. Alloys Compd. 509(6), 3032–3037 (2011).
[Crossref]
D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussel, “Judd-Ofeld analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]
T. Bilici, HÖ Tabakoğlu, N. Topaloğlu, H. Kalaycıoğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[Crossref]
D. N. Batchelder and R. O. Simmons, “Lattice constants and thermal expansivities of silicon and of calcium fluoride between 6° and 322° K,” J. Chem. Phys. 41(8), 2324–2329 (1964).
[Crossref]
L. Braescu and T. Duffar, “Effect of buoyancy and Marangoni forces on the dopant distribution in a single crystal fiber grown from the melt by edge-defined film -fed growth (EFG) method,” J. Cryst. Growth 310(2), 484–489 (2008).
[Crossref]
D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal-growth of dislocation-free LiNbO3 single-crystals by micro-pulling-down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]
D. H. Yoon and T. Fukuda, “Characterization of LiNbO3 micro single-crystals growth by the micro-pulling-down method,” J. Cryst. Growth 144(3-4), 201–206 (1994).
[Crossref]
M. Digonnet, C. Gaeta, and H. Shaw, “1.064 µm and 1.32 µm Nd:YAG single-crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]
M. E. Doroshenko, K. A. Pierpoint, O. K. Alimov, A. G. Papashvili, V. A. Konyushkin, and A. N. Nakladov, “Formation of Tm-Y centers in CaF2-YF3:Tm3+ solid-solution crystal,” J. Lumin. 208, 475–478 (2019).
[Crossref]
S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8(4), 726–740 (1991).
[Crossref]
P. A. Budni, L. A. pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
[Crossref]
R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, C. Souriau, J. C. Borel, and C. Wyon, “Comparative optical study and 2 µm laser performance of the Tm3+ doped oxide crystals-Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV 4(C4), 377–379 (1994).
P. J. D. Lindan and M. J. Gillan, “A molecular-dynamics study of the thermal-conductivity of CaF2 and UO2,” J. Phys.: Condens. Matter 3(22), 3929–3939 (1991).
[Crossref]
Y. Mimura, Y. Okamura, Y. Komazawa, and C. Ota, “CsBr crystalline fiber for visible and infrared transmission,” JPN. J. Appl. Phys. 20(1), L17–L18 (1981).
[Crossref]
J. W. Shen, B. Wu, and Y. H. Shen, “High power CW laser operation with a Nd:YAG single-crystal fiber growth by LHPG method,” Laser Phys. 19(10), 2031–2034 (2009).
[Crossref]
Y. Ju, C. Wu, Z. Wang, Y. Li, and Y. Wang, “High-efficiency composite Tm:YAG laser,” Laser Phys. 18(11), 1316–1318 (2008).
[Crossref]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, “A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm,” Laser Phys. Lett. 16(1), 015803 (2019).
[Crossref]
J. Liu, C. Zhang, Y. Zu, X. Fan, J. Liu, X. Guo, X. Qian, and L. Su, “Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal,” Laser Phys. Lett. 15(4), 045803 (2018).
[Crossref]
H. E. Labelle and A. I. Mlavsky, “Growth of controlled profile crystals from melt: Part I- sapphire filaments,” Mater. Res. Bull. 6(7), 571–579 (1971).
[Crossref]
R. S. Feigelson, “Opportunities for research on single-crystal fibers,” Mater. Sci. Eng., B 1(1), 67–75 (1988).
[Crossref]
P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 µm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]
R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24(6), 1102–1107 (1985).
[Crossref]
V. Markovic, A. Rohrbacher, P. Hofmann, W. Pallmann, S. Pierrot, and B. Resan, “160 W 800 fs Yb:YAG single crystal fiber amplifier without CPA,” Opt. Express 23(20), 25883–25888 (2015).
[Crossref]
Y. Li, K. Miller, E. G. Johnson, C. D. Nie, S. Bera, J. A. Harrington, and R. Shori, “Lasing characteristics of Ho:YAG single crystal fiber,” Opt. Express 24(9), 9751–9756 (2016).
[Crossref]
A. Sottile, E. Damiano, M. Rabe, R. Bertram, D. Klimm, and M. Tonelli, “Widely tunable, efficient 2 µm in monocrystalline Tm3+:SrF2,” Opt. Express 26(5), 5368–5380 (2018).
[Crossref]
C. Zhang, J. Liu, X. Fan, Q. Peng, X. Guo, D. Jiang, X. Qian, and L. Su, “Compact passive Q-switching of a diode-pumped Tm, Y:CaF2 laser near 2 µm,” Opt. Laser Technol. 103, 89–92 (2018).
[Crossref]
X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm, Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]
Z. Zhang, X. S. Guo, J. Y. Wang, C. Zhang, J. Liu, and L. B. Su, “High efficiency 2 µm continuous-wave laser in laser diode-pumped Tm3+, La3+:CaF2 single crystal,” Opt. Lett. 43(17), 4300–4303 (2018).
[Crossref]
D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
[Crossref]
T. Taira, A. Muckai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip laser,” Opt. Lett. 16(24), 1955–1957 (1991).
[Crossref]
G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-µm Tm:BaY2F8 laser,” Opt. Lett. 30(8), 854–856 (2005).
[Crossref]
Jingjing Liu, Cheng Zhang, Zhen Zhang, Jingya Wang, Xiuwei Fan, Jie Liu, and Liangbi Su, “1886-1886-nm mode-locked and wavelength tunable Tm-doped CaF2 lasers,” Opt. Lett. 44(1), 134–137 (2019).
[Crossref]
S. Z. Wang, F. Tang, J. J. Liu, X. B. Qian, Q. H. Wu, A. H. Wu, J. Liu, B. C. Mei, and L. B. Su, “Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er:SrF2 single-crystal fibers,” Opt. Mater. 95, 109255 (2019).
[Crossref]
A. S. S. de Camargo, M. R. B. Andreeta, A. C. Hernandes, and L. A. O. Nunes, “1.8 µm emission and excited state absorption in LHPG grown Gd0.8La0.2VO4:Tm3+ single crystal fibers for miniature lasers,” Opt. Mater. (Amsterdam, Neth.) 28(5), 551–555 (2006).
[Crossref]
U. Ranon and A. Yaniv, “Charge compensation by interstitial F- ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9(1), 17–19 (1964).
[Crossref]
L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]
D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “CW high power IR-laser at 2 µm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]
F. Cornacchia, A. Toncelli, and M. Tonelli, “2 µm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[Crossref]