Abstract

Superconducting nanowire single-photon detector (SNSPD) with near-unity system efficiency is a key enabling, but still elusive, technology for numerous quantum fundamental theory verifications and quantum information applications. The key challenge is to have both a near-unity photon-response probability and absorption efficiency simultaneously for the meandered nanowire with a finite filling ratio, which is more crucial for NbN than other superconducting materials (e.g., WSi) with lower transition temperatures. Here, we overcome the above challenge and produce NbN SNSPDs with a record system efficiency by replacing a single-layer nanowire with twin-layer nanowires on a dielectric mirror. The detector at 0.8 K shows a maximal system detection efficiency (SDE) of 98% at 1590 nm and a system efficiency of over 95% in the wavelength range of 1530–1630 nm. Moreover, the detector at 2.1 K demonstrates a maximal SDE of 95% at 1550 nm using a compacted two-stage cryocooler. This type of detector also shows the robustness against various parameters, such as the geometrical size of the nanowire and the spectral bandwidth, enabling a high yield of 73% (36%) with an SDE of >80% (90%) at 2.1 K for 45 detectors fabricated in the same run. These SNSPDs made of twin-layer nanowires are of important practical significance for batch production.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Single-photon detection is a key enabling technology applied extensively in modern physics, chemistry, biology, and astronomy. The rapidly advancing quantum information and technology have largely motivated the development of the single-photon detector (SPD) and even require the SPD with near-unity efficiency for numerous quantum fundamental theory verifications [1] and quantum information applications [24]. Conventional SPDs, such as avalanche photodiodes and photomultiplier tubes, suffer from humble detection efficiencies due to the limited bandgap energy [5]. The recently developed superconducting nanowire single photon detector (SNSPD) promises a high system detection efficiency (SDE) because of the small Cooper-pair breaking energy and is thus widely applied in quantum key distribution [6], optical quantum computing [7], space-ground laser communication [8], satellite laser ranging [9,10], etc.

The detection mechanism of SNSPD can be simply modeled as a trigger of a current-carrying superconducting nanowire caused by the hot spot formed after photon absorption [1114]. As such, the SDE of the SNSPD is primarily determined by the photon-response probability (ηp) and the optical absorption efficiency (ηabs) of the detector apart from the optical path loss in the system. In previous decades, numerous studies on material selection improvement [1523], fabrication optimization, and optical structure integration [17,19,24,25] have been performed to improve the SDE in terms of the ηp and/or ηabs. To date, SNSPDs using amorphous materials, WSi and MoSi, have demonstrated SDEs of 93%, which however suffer from low time resolution and low speed because of their relatively low superconducting critical temperatures [26].

NbN SNSPDs usually have a lower kinetic inductance and a higher critical current than WSi or MoSi SNSPDs, which guarantees a higher speed and a lower timing jitter. Besides, NbN SNSPDs may operate at higher temperatures up to 7 K [27]. These merits together with near-unity SDE make NbN SNSPDs more practical for applications at near-infrared wavelengths. To date, NbN SNSPDs with higher critical temperatures (Tc) showed slightly low SDEs [17,2830]. By careful optimization of the geometric parameters and material properties of the nanowires, SDEs of 92% for the 1550-nm wavelength at 2.1 K were demonstrated for NbN SNSPDs with a low yield [23,31]. The challenge to further improve the SDEs for NbN SNSPDs is to have near-unity ηp and ηabs simultaneously for the nanowire with a finite filling ratio, which is limited by the coupled relations between the ηp and ηabs via the superconducting nanowire [32,33]. To overcome this issue, optical cavities were commonly used to raise the absorption ηabs that could be further increased to near-unity with the enhanced narrow-band resonant effect, this however in turn leads to the sacrifice of device robustness on the spectral bandwidth and the fabrication tolerance, making the near-unity ηabs challenging in practice. In addition, a thick nanowire can be employed for the increased absorption length, while it would result in a high critical temperature and thus a low photon-response probability ηp [28,34,35].

Instead of the thick nanowire, here the sandwiched twin-layer nanowire structure with a very thin insulating layer in between was adopted [36,37]. This unique structure allows the decoupled ηp and ηabs that ensures the increased optical absorption ηabs while retaining the ηp due to the electrical insulation. When combined with the lossless dielectric mirror [38], ηp and ηabs can reach nearly 100% simultaneously while maintaining the robustness against practical detector parameters, such as the geometrical size of the nanowire and the spectral bandwidth, thus enabling practical SNSPDs with optimal SDEs and a high yield. The fabricated SNSPD at 0.8 K showed a maximal SDE of 98% at a 1590-nm wavelength, and the system efficiency was over 95% in the wavelength range of 1530–1630 nm with a recovery time of 42 ns and a timing jitter of 66 ps. The detector also showed an SDE of 95% at 1550 nm with a dark count rate (DCR) of 100 Hz at 2.1 K in a compact Gifford–McMahon (GM) cryocooler.

2. Methods, analysis, and devices

Our detector structure was designed with superconducting nanowires fabricated on a dielectric mirror composed of alternative SiO2/Ta2O5 films, as shown in Fig. 1(a). This simple structure with a single layer superconducting nanowire (Fig. 1(b)) demonstrated a SDE of ∼90% at approximately 2.1 K [31]. One issue to further improve for the SDE is the coupled relation between ηp and ηabs. To clarify this, Fig. 1(c) presents the ηp (red solid line) and ηabs1 (blue solid line) at 1550 nm as a function of the nanowire thickness. The photon response ηp was obtained by fitting the following empirical expression: $\eta_p(d )= \frac{{{\eta _0}}}{{{{({1 + {{({kd} )}^n}} )}^2}}}$, where η0 = 1 denotes the largest ηp at the plateau with a saturated response efficiency, the denominator stands for the power law (n) describing the decrease in the ηp at a larger thickness d, and k represents the superconducting nanowire-related parameters (see Supplement 1). The absorption curve results from the electromagnetic calculation (see Supplement 1). Note that the ηp saturates to near unity with a nanowire thickness of less than 6 nm and drops dramatically with increased nanowire thickness. This tendency can be easily understood owing to the fact that a limited hot spot formed after the light absorption is not able to efficiently trigger the nanowire with a large cross-section [34,35,39]. As opposed to the response, the optical absorption of the single layer SNSPD ηabs1 (blue solid line of Fig. 1(c)) increases with the increased film thickness and reached the maximum value at a thickness of approximately 12 nm, which is beyond the commonly used nanowire thickness regarding the low intrinsic photon response. Generally, the thicker the nanowire, the higher the photon absorption owing to the increased absorption length. However, the thicker the nanowire, the lower the photon response capability. The unmatched maximum values between ηp and ηabs makes the optimal efficiency challenging, as indicated by the product of ηp multiplied by ηabs (ηp·ηabs1, triangle scatters of Fig. 1(c)).

 figure: Fig. 1.

Fig. 1. (a) Schematic of the NbN SNSPD with the superconducting nanowire fabricated on dielectric mirror. The layers of the detector structure, from bottom to top, include the 400-µm-thick Si substrate, dielectric mirror composed of 13 alternative SiO2/Ta2O5 films, and the NbN superconducting nanowire structure. (b) The cross section of the single layer nanowire structure and the sandwiched twin-layer superconducting nanowire structure defined by the two NbN films with SiO2 films in between. (c) The intrinsic response ηp, absorption ηabs1/ηabs2, and the product of ηp·ηabs1/ηp·ηabs2 at 1550 nm as a function of the nanowire thickness for single layer and twin-layer SNSPDs. The ηp curve was obtained by fitting the empirical expression and the absorption ηabs curves were obtained from the electromagnetic calculation (see Supplement 1).

Download Full Size | PPT Slide | PDF

Here, a sandwiched twin-layer superconducting nanowire structure [36,37,40] based on a dielectric mirror defined by the two-layer NbN films and SiO2 insulator film between with the same linewidth and the filling factor was employed. With this structure a high ηp and a high ηabs2 at a thin thickness of 4–6 nm as shown in Fig. 1(c), could be reached simultaneously. The efficient photon-response capability of each layer nanowire is retained owing to the electrical insulation. When a photon is absorbed by the nanowire in any layer, the athermal phonons from Joule heating would trigger the adjacent nanowire in the other layer [36]. This trigger regime enables only one channel readout circuit without the after-pulsing issues caused by the electrical instabilities of the conventional avalanched SNSPDs [29,41]. Thus, this provides a simple and feasible way to decouple the absorption and photon response, promising single photon detection with near-unity efficiency (ηp·ηabs2, square scatters of Fig. 1(c)).

Based on the analysis given above, we fabricated SNSPDs with sandwiched twin-layer nanowires, covering a 23-µm-diameter circular area to ensure nearly 100% coupling with the photons illuminated via a single mode fiber. The detector was fabricated on a silicon wafer. The quarter-wave optical film stacks composed of 13 periodic SiO2/Ta2O5 bilayers with a central wavelength of 1550 nm were alternately deposited onto the Si substrate using ion beam assistant deposition, and the film thickness was optically monitored to ensure adherence to the designed layer thickness. A 6-nm-thick NbN layer was deposited on the substrate at room temperature using reactive DC magnetron sputtering in a mixture of Ar and N2 gases. Then, the thin 3-nm SiO2 was deposited on the NbN film via plasma enhanced chemical vapor deposition. The top 6-nm-thick layer of NbN was deposited via the same process as the bottom NbN film. The sandwiched twin-layer nanowires were obtained via electron beam lithography and reactive ions in the CF4 plasma on the multilayer films. A bridge was finally etched by the reactive ions to form the co-plane waveguide for the readout of electrical signals.

The selected thickness and the width of the superconducting NbN nanowire in each layer were 6 nm and 75 nm, respectively, with a filling factor of f = 0.54, which are typical for SNSPDs to respond to near-infrared photons and to ensure a near-unity absorption and considerable fabrication margin. Additionally, optimally rounded boundaries were deployed at the inner corners of the turnarounds to avoid a critical current reduction owing to current crowding [4244]. Figures 2(a) and (b) show the scanning electron microscopy (SEM) image of a SNSPD with sandwiched twin-layer nanowires, and Fig. 2(c) shows the magnified transmission electron microscopy (TEM) image of the nanowires with the width and pitch of 75 and 140 nm, respectively. The SNSPD has a critical temperature of ∼7.3 K and a switch current of ∼18.3 µA at 0.8 K.

 figure: Fig. 2.

Fig. 2. (a) SEM image of the active area of a sandwiched twin-layer nanowire detector. (b) The fabricated nanowires and the rounded corners of the nanowires were employed to avoid critical current reduction owing to current crowding. (c) The TEM image of the sandwiched twin-layer nanowire structure with each NbN layer at a thickness of 6 nm and insulator SiO2 layer at 3 nm. The device diameter, the nanowire width, and the nanowire pitch were 23 µm, 75 nm, and 140 nm, respectively.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Figure 3(a) shows the SDE at 1550 nm (red solid squares) and DCR (red hollow squares) of our best detector working at 0.8K provided by a sorption refrigerator. The SDE curve shows a maximal SDE of ≈ 97% at 1550 nm and saturated intrinsic photon-response behavior with a large plateau of approximately 3 µA. The spectral SDE provided in Fig. 3(b) shows a maximal SDE of ≈ 98% at 1590 nm and of over 95% from 1530 to 1630 nm. We determined a near-unity broadband efficiency and a large plateau because of the decoupled photon response and photon absorption. The sandwiched twin-layer nanowires enabled the absorption optimization without compromising the photon response. The other lost photons may be attributed mainly to the absorption loss owing to the non-ideal material and fabrication. Additionally, the SDE was measured at 2.1 K using a compact GM cryocooler as shown by the blue solid scatters in Fig. 3(a). This shows a nearly saturated intrinsic photon-response behavior at 1550 nm and a maximal SDE of ≈ 95% at a DCR of 100 Hz.

 figure: Fig. 3.

Fig. 3. (a) Bias current dependences of SDE and DCR. The SDE at 1550 nm was characterized at 0.8 K (red square) and 2.1 K (blue circle), as provided by a sorption refrigerator and a GM cryocooler, respectively. The SDE curve at 0.8 K showed an SDE = 97.4 ± 1.0% and a large plateau of ∼3 µA at 1550 nm. The SDE curve at 2.1 K showed a maximal SDE of 95.0 ± 1.0% at a DCR of 100 Hz and nearly saturated intrinsic photon-response behavior. (b) Wavelength dependences of the SDEs at a bias current of 16.0 µA at 0.8 K. The SDE curve shows a maximal SDE of 98.2 ± 1.0% at approximately 1590 nm.

Download Full Size | PPT Slide | PDF

In our measurement (see Supplement 1), a high precision power meter (Keysight: 81624B; uncertainty of σpm = ± 0.60% calibrated by Physikalisch-Technische Bundesanstalt, PTB) connected to an antireflection coating fiber was used to calibrate the laser power. The wavelength associated uncertainty in our measurement wavelength range was less than σλ= ±0.01% given by Keysight, and the nonlinearities associated uncertainty from 10 dBm to −60 dBm was less than σn= ±0.05%. In the optical link, fiber fusion splicing was used to avoid the optical loss caused by the conventional fiber connector [45]. The uncertainty of the laser output from the optical link caused mainly by the laser and attenuator stabilities was approximately σl = ± 0.69% measured using the power meter. Additionally, the uncertainty caused by adjusting the polarization controller was approximately σp = ± 0.18% and the uncertainty caused by fiber fusion splicing was approximately σf = ± 0.46% obtained by repeatedly characterizing the loss caused by fusion splicing the fibers. Thus, the total measurement uncertainty of SDE was approximately: σsde = ± 1.0% (see Supplement 1) [26,45].

We characterized 45 different SNSPDs from the same fabrication batch at approximately 2.1K. In total, 16 (33) detectors with SDEs of over 90% (80%) were obtained (see Supplement 1 for details). The high yield of the high-efficiency SNSPD was ascribed to the detector robustness against the practical parameters, such as the geometrical sizes of the nanowire and quality of the film.

The above results indicated that the sandwiched twin-layer NbN SNSPD provides an effective way to decouple ηabs and ηp, thus achieving the near-unityηp·ηabs. Additionally, the twin-layer structure shows improvements in terms of the timing resolution and detection speed because of the higher signal noise ratio and the smaller kinetic inductance compared with the single layer SNSPDs. The timing jitter of the device was measured by recording the histogram of the time difference between the laser-synchronizing signal and the device pulse using a time-correlated single-photon counting module at the wavelength of 1550 nm [46]. Our detector showed a value of 66 ps for the timing jitter, which is defined as the half maximum of the histogram at a bias current of Ib = 16.0 µA. At the same bias current, the recovery time constant of the device based on the oscilloscope persistence map was 42 ns, which is defined as the duration of the pulse at 1/e of the maximum pulse amplitude. The detector also showed a counting rate of 20 MHz with half of the maximal efficiency. These results compared with the single-layer detector indicated a faster detection speed and a lower timing jitter (see Supplement 1).

In principle, a better timing jitter and recovery time can be obtained by increasing the layer number because of the smaller kinetic inductance and the higher signal noise ratio. Thus, we fabricated and characterized three-layer nanowire SNSPDs. The detector showed a stable detection behavior and an improved recovery time as expected, whereas an unexpected low switching current and thus unsaturated SDE behavior and a low maximum SDE were obtained. We believe some constraints were introduced by the fabrication process. Further optimization of the process is necessary for three or more layered nanowire SNSPDs.

Finally, regarding the polarization dependence, our twin-layer nanowire would increase the polarization sensitivity due to the increased nanowire thickness compared with conventional single-layer SNSPDs. This may help to realize SNSPD with high polarization extinction ratio. On the other hand, the cladding layers with high-index materials or optical structures atop the nanowire may be adopted to depress the polarization sensitivity.

4. Conclusions

We demonstrated SNSPDs for optimal system detection efficiency by fabricating sandwiched twin-layer nanowires on a dielectric mirror. The detector architecture exhibited a decoupled photon response and photon absorption and robustness against the practical parameters of the single-photon detection condition. The best SNSPD at 0.8 K showed a maximal SDE of 98% at 1590 nm and an SDE of 97% at 1550 nm. A high yield of 73% (36%) with an SDE of >80% (90%) at 2.1 K provided by a compact GM cryocoler was obtained. We believe it is possible to further improve the yield and push the maximum SDE toward 100%.

Funding

National Key Research and Development Program of China (2017YFA0304000); National Natural Science Foundation of China (61671438, 61827823, 61971408); Shanghai Municipal Science and Technology Major Project (2019SHZDZX01); Shanghai Rising-Star Program (20QA1410900); Program of Shanghai Academic Research Leader (18XD1404600); Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020241).

Acknowledgments

We thank Xiaoyu Liu for the help on the electron beam lithography and Photon Technology Co., Ltd for device measurement assistance. H. Li performed the device simulation and designed the experiments. P. Hu fabricated and measured the SNSPDs. H. Q. Wang, Y. Xiao, J. Huang, X. Y. Yang, and W. J. Zhang provided experimental assistance. H. Li, P. Hu and L. X. You analyzed the data. All authors contributed to the discussions and the manuscript preparation. H. Li and L. X. You wrote the manuscript with input from all authors. L. X. You supervised the project.

Disclosures

The authors declare that they have no conflicts of interest.

See Supplement 1 for supporting content.

References

1. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015). [CrossRef]  

2. Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018). [CrossRef]  

3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantumn computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef]  

4. L. X. You, “Superconducting nanowire single-photon detectors for quantum information,” Nanophotonics 9(9), 2673–2692 (2020). [CrossRef]  

5. R. H. Hadfiel, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009). [CrossRef]  

6. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016). [CrossRef]  

7. H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018). [CrossRef]  

8. H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014). [CrossRef]  

9. H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016). [CrossRef]  

10. L. Xue, Z. L. Li, L. B. Zhang, D. S. Zhai, Y. Q. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. H. Wu, and Y. H. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016). [CrossRef]  

11. J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014). [CrossRef]  

12. A. N. Zotova and D. Y. Vodolazov, “Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model,” Supercond. Sci. Technol. 27(12), 125001 (2014). [CrossRef]  

13. A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015). [CrossRef]  

14. A. Engel and A. Schilling, “Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector,” J. Appl. Phys. 114(21), 214501 (2013). [CrossRef]  

15. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015). [CrossRef]  

16. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011). [CrossRef]  

17. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013). [CrossRef]  

18. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010). [CrossRef]  

19. H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016). [CrossRef]  

20. V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014). [CrossRef]  

21. D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012). [CrossRef]  

22. Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017). [CrossRef]  

23. W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019). [CrossRef]  

24. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006). [CrossRef]  

25. L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017). [CrossRef]  

26. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013). [CrossRef]  

27. R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, “Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K,” Opt. Express 27(17), 24601–24609 (2019). [CrossRef]  

28. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013). [CrossRef]  

29. S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017). [CrossRef]  

30. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013). [CrossRef]  

31. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017). [CrossRef]  

32. A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009). [CrossRef]  

33. A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072 (2018). [CrossRef]  

34. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010). [CrossRef]  

35. R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014). [CrossRef]  

36. V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016). [CrossRef]  

37. A. Jafari Salim, A. Eftekharian, and A. Hamed Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115(5), 054514 (2014). [CrossRef]  

38. M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).

39. A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005). [CrossRef]  

40. I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018). [CrossRef]  

41. F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012). [CrossRef]  

42. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011). [CrossRef]  

43. H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012). [CrossRef]  

44. D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012). [CrossRef]  

45. T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020). [CrossRef]  

46. L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013). [CrossRef]  

References

  • View by:

  1. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
    [Crossref]
  2. Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
    [Crossref]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantumn computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [Crossref]
  4. L. X. You, “Superconducting nanowire single-photon detectors for quantum information,” Nanophotonics 9(9), 2673–2692 (2020).
    [Crossref]
  5. R. H. Hadfiel, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  6. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
    [Crossref]
  7. H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
    [Crossref]
  8. H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
    [Crossref]
  9. H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
    [Crossref]
  10. L. Xue, Z. L. Li, L. B. Zhang, D. S. Zhai, Y. Q. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. H. Wu, and Y. H. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
    [Crossref]
  11. J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
    [Crossref]
  12. A. N. Zotova and D. Y. Vodolazov, “Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model,” Supercond. Sci. Technol. 27(12), 125001 (2014).
    [Crossref]
  13. A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
    [Crossref]
  14. A. Engel and A. Schilling, “Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector,” J. Appl. Phys. 114(21), 214501 (2013).
    [Crossref]
  15. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
    [Crossref]
  16. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
    [Crossref]
  17. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref]
  18. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
    [Crossref]
  19. H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
    [Crossref]
  20. V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
    [Crossref]
  21. D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
    [Crossref]
  22. Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
    [Crossref]
  23. W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
    [Crossref]
  24. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
    [Crossref]
  25. L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
    [Crossref]
  26. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  27. R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, “Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K,” Opt. Express 27(17), 24601–24609 (2019).
    [Crossref]
  28. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
    [Crossref]
  29. S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
    [Crossref]
  30. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [Crossref]
  31. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
    [Crossref]
  32. A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
    [Crossref]
  33. A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072 (2018).
    [Crossref]
  34. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
    [Crossref]
  35. R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
    [Crossref]
  36. V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016).
    [Crossref]
  37. A. Jafari Salim, A. Eftekharian, and A. Hamed Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115(5), 054514 (2014).
    [Crossref]
  38. M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).
  39. A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
    [Crossref]
  40. I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
    [Crossref]
  41. F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
    [Crossref]
  42. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
    [Crossref]
  43. H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
    [Crossref]
  44. D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
    [Crossref]
  45. T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
    [Crossref]
  46. L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
    [Crossref]

2020 (2)

L. X. You, “Superconducting nanowire single-photon detectors for quantum information,” Nanophotonics 9(9), 2673–2692 (2020).
[Crossref]

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

2019 (2)

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, “Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K,” Opt. Express 27(17), 24601–24609 (2019).
[Crossref]

2018 (4)

A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

2017 (4)

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[Crossref]

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

2016 (5)

2015 (3)

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

2014 (6)

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

A. N. Zotova and D. Y. Vodolazov, “Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model,” Supercond. Sci. Technol. 27(12), 125001 (2014).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

A. Jafari Salim, A. Eftekharian, and A. Hamed Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115(5), 054514 (2014).
[Crossref]

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

2013 (6)

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref]

A. Engel and A. Schilling, “Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector,” J. Appl. Phys. 114(21), 214501 (2013).
[Crossref]

2012 (4)

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

2011 (2)

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

2010 (2)

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

2009 (2)

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

R. H. Hadfiel, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

2006 (1)

2005 (1)

A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantumn computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref]

Abellan, C.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Allman, M. S.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Amaya, W.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Anant, V.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Bai, B.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Banerjee, A.

Bartolf, H.

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Barzilay, M.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

Berggren, K. K.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref]

Bienfang, J. C.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Bierhorst, P.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Boroson, D. M.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Böttger, U.

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Bulgarini, G.

Burianek, D. A.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Bussières, F.

Cavailles, A.

Chang, J.

Chen, H.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Chen, J.

Chen, M. C.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Chen, S. J.

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Chen, T. Y.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Christensen, B. G.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Clem, J. R.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

Coakley, K. J.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Cornwell, D. M.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Dane, A. D.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

Dauler, E. A.

de Dood, M. J. A.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Devizenko, A. Y.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

Ding, X.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Dorenbos, S. N.

R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, “Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K,” Opt. Express 27(17), 24601–24609 (2019).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Dörner, S.

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

Dowling, J. P.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Dressel, M.

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

Driessen, E. F. C.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
[Crossref]

Dyer, S. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Eftekharian, A.

A. Jafari Salim, A. Eftekharian, and A. Hamed Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115(5), 054514 (2014).
[Crossref]

Engel, A.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

A. Engel and A. Schilling, “Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector,” J. Appl. Phys. 114(21), 214501 (2013).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
[Crossref]

Fan, J. Y.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Farr, W. H.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Fiore, A.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Florya, I. N.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

Gaggero, A.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Gaudio, R.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Gerrits, T.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gerthsen, D.

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Gippius, N. A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Glancy, S.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Gol’tsman, G. N.

Goltsman, G.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

Goltsman, G. N.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

Gourgues, R.

Guan, J. Y.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Günther, B.

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Hadfiel, R. H.

R. H. Hadfiel, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Hadfield, R. H.

A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072 (2018).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Hamed Majedi, A.

A. Jafari Salim, A. Eftekharian, and A. Hamed Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115(5), 054514 (2014).
[Crossref]

Hamel, D. R.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

He, Y. H.

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

He, Y. M.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Heath, R. M.

Heintze, E.

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

Hemakumara, D.

Hemmati, H.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Henrich, D.

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

Hodge, C.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Hofherr, M.

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Höfling, S.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Horansky, R. D.

Hortensius, H. L.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
[Crossref]

Huang, H.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Huang, J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Huang, K.

Huang, M. Q.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Hübers, H. W.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
[Crossref]

Il’in, K.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
[Crossref]

Ilin, K.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Ivry, Y.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

Jafari Salim, A.

A. Jafari Salim, A. Eftekharian, and A. Hamed Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115(5), 054514 (2014).
[Crossref]

Jennewein, T.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Jia, Q.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Jiang, X.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Kalfon-Cohen, E.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

Kalhor, N.

Kamp, M.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Kang, L.

Kerman, A. J.

Khatri, F.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Kim, C. S.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

Klapwijk, T. M.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Knill, E.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantumn computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref]

Korneev, A.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

Korneev, A. A.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

Korneeva, Y.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

Korneeva, Y. P.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

Korzh, B.

Kovalik, J. M.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Krapick, M. H. S.

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).

Kumor, D. R.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Kwiat, P. G.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantumn computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref]

Lambrocco, C.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Laurat, J.

Le Jeannic, H.

Lehman, J.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

Leoni, R.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Li, H.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

Li, M.

Li, M. H.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Li, M. J.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Li, W.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Li, Y. H.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Li, Y. Q.

Li, Z. L.

Lita, A. E.

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

Liu, D. K.

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Liu, H.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Liu, W.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Liu, X. Y.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Liu, Y.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Los, J. W. N.

Lu, C. Y.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Lusche, R.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

Lv, C. L.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Ma, X. F.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Mao, Y.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Marsili, F.

H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

Mattioli, F.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Meckbach, J. M.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

Meng, W. D.

Meyer-Scott, E.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Migdall, A.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

Migdall, A. L.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Mikhailov, M. Y.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

Miki, S.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantumn computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref]

Mirin, R. P.

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).

Mitchell, M. W.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Molnar, R. J.

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

Morin, O.

Morozov, D.

Munro, W. J.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Murphy, D. V.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Najafi, F.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

Nam, S. W.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016).
[Crossref]

H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).

Nasti, U.

Natarajan, C. M.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Nolan, D.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

O’Connor, J. A.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Ou, X.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Pan, J. W.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Pappas, D. P.

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

Peng, C. Z.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Pottapenjara, V. K.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Pruneri, V.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Qin, J.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Rall, D.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Reichensperger, P.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

Renema, J. J.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Robinson, B. S.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Rosenberg, D.

Rosfjord, K. M.

Sahin, D.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Scheffler, M.

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

Schilling, A.

A. Engel and A. Schilling, “Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector,” J. Appl. Phys. 114(21), 214501 (2013).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Schneider, C.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Schneider, R.

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

Semenov, A.

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
[Crossref]

Shalm, L. K.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Shaw, M. D.

H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Siegel, M.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
[Crossref]

Sodnik, Z.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Splett, J.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

Stern, J. A.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stevens, M. J.

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Surick, J. J.

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

Tang, K.

Tanner, M. G.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Terai, H.

Thayne, I.

Tortorici, E.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Trifonov, A.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

Ureña, E. B. D.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

van Exter, M. P.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Vayshenker, I.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).

Verma, V.

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

Verma, V. B.

H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref]

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).

Vissers, M. R.

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

Vodolazov, D.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

Vodolazov, D. Y.

A. N. Zotova and D. Y. Vodolazov, “Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model,” Supercond. Sci. Technol. 27(12), 125001 (2014).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

Voronov, B. M.

Wang, H.

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Wang, J.

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

Wang, Q.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Wang, X. B.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Wang, Z.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Warburton, R. J.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Wayne, M. A.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Wu, C.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Wu, J. J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Wu, P. H.

Wu, Z. B.

Xie, X. M.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Xiong, Y. H.

Xue, L.

Yabuno, M.

Yamashita, T.

Yang, J. K. W.

Yang, X. Y.

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Yin, H. L.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

You, L. X.

L. X. You, “Superconducting nanowire single-photon detectors for quantum information,” Nanophotonics 9(9), 2673–2692 (2020).
[Crossref]

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Yu, Z. W.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Yuan, X.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Zadeh, I. E.

Zbinden, H.

Zhai, D. S.

Zhang, J.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Zhang, L.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhang, L. B.

Zhang, Q.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Zhang, S.

Zhang, W. J.

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhang, W. X.

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhang, Y.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

Zhang, Y. B.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Zhang, Z. P.

Zhao, Q.

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

Zhou, F.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Zhou, H.

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

Zhou, Y. H.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

Zhou, Z. L.

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

Zichi, J.

Zijlstra, T.

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

Zotova, A.

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

Zotova, A. N.

A. N. Zotova and D. Y. Vodolazov, “Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model,” Supercond. Sci. Technol. 27(12), 125001 (2014).
[Crossref]

Zwiller, V.

R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, “Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K,” Opt. Express 27(17), 24601–24609 (2019).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

AIP Adv. (1)

L. X. You, X. Y. Yang, Y. H. He, W. X. Zhang, D. K. Liu, W. J. Zhang, L. Zhang, L. Zhang, X. Y. Liu, S. J. Chen, Z. Wang, and X. M. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Appl. Phys. Lett. (6)

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100(11), 112601 (2012).
[Crossref]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett. 100(18), 182602 (2012).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm,” Appl. Phys. Lett. 98(25), 251105 (2011).
[Crossref]

M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. D. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108(13), 131108 (2016).
[Crossref]

Eur. Phys. J. B (1)

A. Semenov, A. Engel, H. W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47(4), 495–501 (2005).
[Crossref]

J. Appl. Phys. (5)

A. Jafari Salim, A. Eftekharian, and A. Hamed Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115(5), 054514 (2014).
[Crossref]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H. W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H. W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116(4), 043906 (2014).
[Crossref]

D. Henrich, S. Dörner, M. Hofherr, K. Il’in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, and M. Siegel, “Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content,” J. Appl. Phys. 112(7), 074511 (2012).
[Crossref]

A. Engel and A. Schilling, “Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector,” J. Appl. Phys. 114(21), 214501 (2013).
[Crossref]

Low Temp. Phys. (1)

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44(3), 221–225 (2018).
[Crossref]

Metrologia (1)

T. Gerrits, A. Migdall, J. C. Bienfang, J. Lehman, S. W. Nam, J. Splett, I. Vayshenker, and J. Wang, “Calibration of free-space and fiber-coupled single-photon detectors,” Metrologia 57(1), 015002 (2020).
[Crossref]

Nanophotonics (1)

L. X. You, “Superconducting nanowire single-photon detectors for quantum information,” Nanophotonics 9(9), 2673–2692 (2020).
[Crossref]

Nanotechnology (1)

Y. Ivry, J. J. Surick, M. Barzilay, C. S. Kim, F. Najafi, E. Kalfon-Cohen, A. D. Dane, and K. K. Berggren, “Superconductor-superconductor bilayers for enhancing single-photon detection,” Nanotechnology 28(43), 435205 (2017).
[Crossref]

Nat. Photonics (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

R. H. Hadfiel, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Nature (2)

Y. Liu, Q. Zhao, M. H. Li, J. Y. Guan, Y. B. Zhang, B. Bai, W. J. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. X. You, J. Zhang, X. F. Ma, J. Y. Fan, Q. Zhang, and J. W. Pan, “Device-independent quantum random-number generation,” Nature 562(7728), 548–551 (2018).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantumn computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref]

Opt. Express (8)

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792 (2015).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

H. Li, S. J. Chen, L. X. You, W. D. Meng, Z. B. Wu, Z. P. Zhang, K. Tang, L. Zhang, W. J. Zhang, X. Y. Yang, X. Y. Liu, Z. Wang, and X. M. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref]

R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, “Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K,” Opt. Express 27(17), 24601–24609 (2019).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref]

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

W. J. Zhang, Q. Jia, L. X. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. M. Xie, “Saturating Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors via Defect Engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Phys. Rev. B (3)

A. Semenov, B. Günther, U. Böttger, H. W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009).
[Crossref]

D. Henrich, P. Reichensperger, M. Hofherr, J. M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B 86(14), 144504 (2012).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

Phys. Rev. Lett. (4)

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellan, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115(25), 250402 (2015).
[Crossref]

J. J. Renema, R. Gaudio, Q. Wang, Z. L. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M. J. A. de Dood, A. Fiore, and M. P. van Exter, “Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector,” Phys. Rev. Lett. 112(11), 117604 (2014).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber,” Phys. Rev. Lett. 117(19), 190501 (2016).
[Crossref]

H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, “Toward Scalable Boson Sampling with Photon Loss,” Phys. Rev. Lett. 120(23), 230502 (2018).
[Crossref]

Proc. SPIE (1)

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Sci. China: Phys., Mech. Astron. (1)

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Supercond. Sci. Technol. (3)

L. X. You, H. Li, W. J. Zhang, X. Y. Yang, L. Zhang, S. J. Chen, H. Zhou, Z. Wang, and X. M. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

A. N. Zotova and D. Y. Vodolazov, “Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model,” Supercond. Sci. Technol. 27(12), 125001 (2014).
[Crossref]

A. Engel, J. J. Renema, K. Il’in, and A. Semenov, “Detection mechanism of superconducting nanowire single-photon detectors,” Supercond. Sci. Technol. 28(11), 114003 (2015).
[Crossref]

Other (1)

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting Single-Photon Detectors with Enhanced High-Efficiency Bandwidth,” arXiv:1706.00004 (2017).

Supplementary Material (1)

NameDescription
Supplement 1       Device simulation,measurement , and results

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Schematic of the NbN SNSPD with the superconducting nanowire fabricated on dielectric mirror. The layers of the detector structure, from bottom to top, include the 400-µm-thick Si substrate, dielectric mirror composed of 13 alternative SiO2/Ta2O5 films, and the NbN superconducting nanowire structure. (b) The cross section of the single layer nanowire structure and the sandwiched twin-layer superconducting nanowire structure defined by the two NbN films with SiO2 films in between. (c) The intrinsic response ηp, absorption ηabs1/ηabs2, and the product of ηp·ηabs1/ηp·ηabs2 at 1550 nm as a function of the nanowire thickness for single layer and twin-layer SNSPDs. The ηp curve was obtained by fitting the empirical expression and the absorption ηabs curves were obtained from the electromagnetic calculation (see Supplement 1).
Fig. 2.
Fig. 2. (a) SEM image of the active area of a sandwiched twin-layer nanowire detector. (b) The fabricated nanowires and the rounded corners of the nanowires were employed to avoid critical current reduction owing to current crowding. (c) The TEM image of the sandwiched twin-layer nanowire structure with each NbN layer at a thickness of 6 nm and insulator SiO2 layer at 3 nm. The device diameter, the nanowire width, and the nanowire pitch were 23 µm, 75 nm, and 140 nm, respectively.
Fig. 3.
Fig. 3. (a) Bias current dependences of SDE and DCR. The SDE at 1550 nm was characterized at 0.8 K (red square) and 2.1 K (blue circle), as provided by a sorption refrigerator and a GM cryocooler, respectively. The SDE curve at 0.8 K showed an SDE = 97.4 ± 1.0% and a large plateau of ∼3 µA at 1550 nm. The SDE curve at 2.1 K showed a maximal SDE of 95.0 ± 1.0% at a DCR of 100 Hz and nearly saturated intrinsic photon-response behavior. (b) Wavelength dependences of the SDEs at a bias current of 16.0 µA at 0.8 K. The SDE curve shows a maximal SDE of 98.2 ± 1.0% at approximately 1590 nm.

Metrics