M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]
N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]
V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]
A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]
X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]
X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]
X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]
A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]
Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]
M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]
M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]
A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]
M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]
A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]
D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).
F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).
Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]
N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]
M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]
A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]
Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]
V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003).
[Crossref]
X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]
M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]
N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]
F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]
A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]
Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]
A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]
H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]
M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]
A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]
N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]
N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]
A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]
D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]
A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]
D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]
M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]
M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]
V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]
V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]
N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]
M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]
A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]
N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]
H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]
M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]
M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]
Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]
F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]
M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]
M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]
X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]
X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]
L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]
Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]
M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]
X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]
X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]
P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]
X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]
N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]
V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]
B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]
G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]
X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]
M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]
L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]
K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]
M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]
M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]
Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).
M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).
Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]
Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]
L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]
A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]
D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]
T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]
X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]
X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]
A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]
N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]
S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]
H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]
F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]
H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]
D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003).
[Crossref]
A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]
Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]
P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]
P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]
M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]
M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]
Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]
M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]
A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]
M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]