Abstract

The singlet oxygen quantum yield (ΦΔ) was monitored in real time through time resolved spectroscopy measurement, using gadolinium labeled hematoporphyrin monomethyl ether (Gd-HMME) as photosensitizer. According to the kinetics equations of singlet oxygen generation and reaction, ΦΔ was related to phosphorescence lifetime (τp). Through measuring τp of Gd-HMME in different oxygen conditions, the radiation transition property of first exited triplet state (T1) was monitored; combined with the triplet state quantum yield (ΦT) determined by linear fitting the ΦΔ, which was measured in different oxygen content using a relative measurement, ΦΔ can be determined in real time. The identification of anoxia during the treatment of photodynamic therapy (PDT) by this method is also presented.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

PDT is one of the most significant cancer treatment methods due to its noninvasive nature, excellent spatiotemporal control, negligible drug resistance factor, and low side effects compared with those of conventional surgery and radiation therapy [13]. The therapeutic efficiency largely depends on the ability of photosensitizer to generate cytotoxic singlet oxygen (1O2), which is represented by ΦΔ [46]. ΦΔ was concerned with oxygen content, which was consumed during the implementation of PDT, as oxygen supplied inadequately, ΦΔ will be influenced, leading to unpredictable treatment effect [710]. To take control of the condition of the treatment in real time, monitoring ΦΔ is quite necessary.

To detect ΦΔ, there are mainly two ways. The first was to get a number of parameters such as luminescence of 1O2 around 1270 nm, lifetimes and absorbance of both tested photosensitizer (PS) and the PS as standard, which was known as the gold standard technique to detect ΦΔ [11]. However, despite recent advances in high-sensitivity NIR photomultiplier tube (PMT) and single photon counting instrumentation, the technique remains technically challenging in biological systems, due to the weak signal that results from the very high reactivity of 1O2 which means that only about 1 in 108 1O2 molecules undergoes luminescence deactivation [1213]. Thus, monitoring the level of ΦΔ timely in clinical through this method is still under exploration. Another technique utilized some probes which can bond with 1O2 to monitor the production of 1O2 indirectly [1419]. Among them, chemiluminescence probes were believed to be suitable for biological applications, and were already proved to be non-biological toxicity, high sensitivity and selectivity in 1O2 detecting. Though this method was convenience to use, the synthesis process of probes at present were complicated and lack of stability, this method was used mostly in laboratorial tests [2022]. To find out the effective way for ΦΔ measuring in clinic, our group simply modified photosensitizer HMME by doping Gd3+, Gd-HMME has already been proved to have potential to be served as multifunctional theragnostic agents, and can be used as a PS, contrast agents in magnetic resonance imaging and oxygen indicator. The doping of Gd3+ break out the forbidden transition from T1 state to the ground state of HMME, leading it possessing measurable phosphorescence emission. Owing to the property of phosphorescence emission that shared with the process of singlet oxygen generation, ΦΔ was made relationship with phosphorescence intensity [23]. However, phosphorescence measuring was always influenced by the power of excitation laser, frequency of the received equipment, geometric condition and some other parameters, resulting in a poor accuracy and stability. Therefore, until now, there is no dependable technique to detect ΦΔ timely in clinic.

The phosphorescence can be detected through time resolved spectroscopy measurement, which is an effective way to monitor ΦΔ with a good antijamming performance compared with using luminescence measurement method. In this work, ΦΔ was monitor by time resolved spectroscopy measurement using Gd-HMME as photosensitizer. The relationship between τp and ΦΔ was analyzed from the photophysical and chemical processes during singlet oxygen generation by Gd-HMME. The radiation transition rates from T1 state were obtained through measuring τp of Gd-HMME in various oxygen concentrations. ΦT was got by measuring ΦΔ under different oxygen conditions, using a relative method with RB (ΦΔ = 0.80) as the reference and DPBF as the singlet oxygen trapping reagent, then the relation between ΦΔ and τp was determined.

2. Theoretical analysis and experiments

2.1 Relationship between phosphorescence lifetime and singlet oxygen quantum yield

To obtain the relationship between τp and ΦΔ, the energy transfer process between Gd-HMME and O2 was analyzed [24], shown in Fig. 1, and all definitions of variables are listed in Table 1. When Gd-HMME was excited by 532 nm laser, it transformed from the singlet ground state S0 to an excited singlet state, and through nonradiative relaxation, decayed to the bottom of the first excited singlet state S1 rapidly. After that, the molecules probably decayed through three pathways: relaxation to S0 through a non-fluorescent pathway and a fluorescence emission, in addition, it can also transform to the first excited triplet state T1 by the intersystem crossing process (kISC). The fluorescence intensity (IF) and triplet state quantum yield (ΦT) can be expressed by the following relationships:

$${I_\textrm{F}} = \frac{{{k_\textrm{F}}}}{{{k_\textrm{F}}\textrm{ + }{k_\textrm{n}}_\textrm{F} + {k_{\textrm{ISC}}}}}{N_0}\alpha \nu \rho \sigma ,$$
$${\Phi _\textrm{T}} = \frac{{{k_{\textrm{ISC}}}}}{{{k_\textrm{F}} + {k_\textrm{n}}_\textrm{F} + {k_{\textrm{ISC}}}}},$$
where N0 is the number of Gd-HMME at ground state; α is a constant; ν is the light speed; ρ is the photon number density of the pump; and σ is the absorption cross-section of Gd-HMME. Afterwards, Gd-HMME at T1 state may relaxed to S0 through three pathways: (i) non-phosphorescence, (ii) phosphorescence, and (iii) return to S0 by energy transfer to O2. The phosphorescence intensity (Ip) and ΦΔ can be described by Eqs. (3) and (4):
$${I_\textrm{p}} = \frac{{{k_\textrm{p}}}}{{{k_\textrm{p}} + {k_{\textrm{np}}} + {k_\textrm{q}}[{}^3{\textrm{O}_2}]}}{\Phi _\textrm{T}}{N_0}\alpha \nu \rho \sigma ,$$
$${\Phi _\Delta } = {\Phi _\textrm{T}}\frac{{{k_q}[{{}^3{\textrm{O}_2}} ]}}{{{k_p} + {k_{np}} + {k_q}[{{}^3{\textrm{O}_2}} ]}},$$
where [3O2] denotes the concentration of dissolved molecular oxygen. The reciprocal of sum (kp+knp+kq[3O2]) is identical to the τp, expressed as Eq. (5)
$${\tau _\textrm{p}} = \frac{1}{{{k_\textrm{p}} + {k_{\textrm{np}}} + {k_\textrm{q}}[{{}^3{\textrm{O}_2}} ]}},$$
and then, Eq. (4) can be expressed as:
$${\Phi _\Delta } = {\Phi _\textrm{T}} - {\Phi _\textrm{T}}{\tau _\textrm{p}}({{k_\textrm{p}} + {k_{\textrm{np}}}} ).$$

 figure: Fig. 1.

Fig. 1. Energy level schematic diagram of Gd-HMME and O2 as well as the energy transfer process.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Definitions of variables describing the physical process of phosphorescence production and the singlet oxygen generation.

Thus, to obtain the relationship between τp and ΦΔ, ΦT and kp+knp should be measured.

2.2 Method for determination of singlet oxygen quantum yields

The ΦΔ of Gd-HMME under different oxygen concentration was determined by a relative method with Rose Bengal (RB) as the reference and 1,3-diphenylisobenzofuran (DPBF) as the singlet oxygen trapping reagent [2527]. The relative spectrophotometric method [28] was based on the following equation,

$$\frac{{{\Phi _\Delta }{I_{\textrm{abs}}}}}{k} = \frac{{\Phi _\Delta ^{\textrm{std}}I_{\textrm{abs}}^{\textrm{std}}}}{{{k^{\textrm{std}}}}},$$
where the superscript “Std” denotes the reference reagent, k is the consumption rate of DPBF, determined from the decrease in the absorption peak at 410 nm, and Iabs is the absorption of excitation light by the PS [29], which is dependent on the concentration of the PS, the extinction coefficient, and the intensity of the incident light. The relationship can be described by Eq. (8),
$${I_{\textrm{abs}}} = \int {{I_{\textrm{laser}}}} (\lambda )({1 - {e^{ - \sigma (\lambda )NL}}} )d\lambda .$$
where Ilaser (λ) is the normalized emission spectrum of the 532 nm laser, σ (λ) is the absorption coefficient of the substance, N represents the concentration of the PS, and L is the path length of light in the PS solution.

2.3 Chemicals and preparation of samples

Hematoporphyrin monomethyl ether (HMME) was obtained from Shanghai Xianhui Pharmacuetical Co. Ltd. Anhydrous gadolinium (III) chloride (GdCl3), 1,3-diphenylisobenzofuran (DPBF) and 4,5,6,7,-tetracholro-2’,4’,5’,7'-tetraiodofluorescein disodium salt (Rose Bengal) were purchased from J&K Scientific Ltd. All chemical reagents were analytical reagent grade and used without further purification.

Gd-HMME was synthesized through the method described in our previous work [23]. Briefly, a mixture of 6 g imidazole, 12 mg HMME and 50 mg anhydrous GdCl3, was added into a 50 ml round bottom flask. The mixture was heated to and kept at 200$^\circ $C for 2 h under magnetically stirring. All of the synthesize process was under protection of argon flow. After cooling down to room temperature, the resultant was dissolved in methanol to yield a solution.

2.4 Measurements of phosphorescence lifetimes and singlet oxygen quantum yield

A diode laser centered at 405 nm of power density of 1 mW/cm2 was used as the excitation light. Photoluminescence spectra of Gd-HMME were recorded by a miniature fiber optic spectrometer (Ocean Optics USB2000). UV-visible absorption spectra were recorded using a miniature fiber optic spectrometer (Ocean Optics QE65000) equipped with a deuterium lamp based on the Beer-Lambert law.

The dependence of phosphorescence lifetime on oxygen concentration was studied first to obtain the radiation transition rates (kp+knp and kq) from T1 state. The curette contained with 3 mL methanol solution of 2.5 μM Gd-HMME and a beaker of 20 mL same solution were placed into a closed chamber connected with oxygen and nitrogen. Two mass flowmeters were used to adjust the proportion of oxygen in chamber and the concentration of oxygen would change accordingly. The concentration of oxygen in the Gd-HMME solution was represented by that in beaker contained methanol, and was measured with a Clark electrode when the display of electrode got stable for a while. To determine the lifetime of Gd-HMME in different oxygen concentration, a square wave was given by a diode laser controller (Thorlabs ITC510) to control a diode laser centered at 405 nm (Thorlabs TCLDM9). Phosphorescence signals were recorded by a grating spectrometer (Zolix Omni-λ300) and amplified by a photomultiplier tube (Zolix PMTH-S1-R212) with a high voltage power supply (Zolix HVC1800). The time-resolved signal was averaged with a digital phosphor oscilloscope (Tektronix DPO5054) and the decay curve was sent to a personal computer for lifetime determination. The lifetime evaluation was performed by fitting the decay curve to an exponential function using adjustable parameters.

The ΦΔ of Gd-HMME under different oxygen concentration was measured by the relative method. The mixture: (1) DPBF 20 μM, RB 0.5 μM; (2) DPBF 20 μM, Gd-HMME 2.5 μM. They were put into a silica curette and illuminated under a 532 nm laser (CLO Laser DPGL-500L, China), the consumption of DPBF was monitored by UV-visible absorption. The degradation rate of DPBF was determined according to the decrease in the absorption peak at 410 nm over time. A beaker of 20 mL mixture was put together with the texted solution into a chamber connected with oxygen and nitrogen to monitor the dissolved oxygen concentration. The proportion of oxygen in the chamber was realized as the same way in the measurement of τp.

3. Results and discussion

3.1 UV-vis absorption spectra and photoluminescence properties of HMME and Gd-HMME

The optical property of Gd-HMME was characterized by UV-vis absorption spectra and photoluminescence spectra compared with that of HMME. Figure 1(a) exhibited the normalized UV-vis absorption spectra of HMME (black line) and Gd-HMME (red line). The absorption spectrum of HMME comprises a Soret band ranged from 350 nm to 450 nm and four Q bands centered at 498 nm, 532 nm, 566 nm and 620 nm respectively. The UV-vis absorption spectrum of Gd-HMME comprises a Soret band and two Q bands. The Soret band of Gd-HMME concentrated at 407 nm, and has a red-shift of 15 nm compared with that of HMME. The red shift was attributed to the out-of-plane structure of lanthanide-porphyrins [3032]. The Soret band of Gd-HMME was narrower than that of HMME. The Q band reduced to two compared with that of HMME and located at 538 nm and 572 nm respectively. The reason for the reduction was the increase in symmetry of the structure of Gd-HMME [30].

Normalized photoluminescence spectra of Gd-HMME (red) and HMME (black) were shown in Fig. 2(b). HMME possesses two emission peaks located at 623 nm and 684 nm respectively, which were proved to be fluorescence with lifetimes on the nanosecond scale [33]. However, four emission peaks appear in the photoluminescence spectra of Gd-HMME. Among them, the emission peaks at 585 and 630 nm were weak fluorescence peaks, whose lifetimes were shorter than 1 μs. The intensity of the two peaks was much smaller than that of HMME, caused by the heavy atom effect of Gd3+ [34]. Strong red shifted photoluminescence peaks in the very near infrared region (712 nm and 790 nm) were observed, which were proved to be phosphorescence peaks [33]. Compared with HMME, higher ΦT in Gd-HMME means the decreasing of fluorescence and the increasing of phosphorescence emissions.

 figure: Fig. 2.

Fig. 2. Typical normalized (a) UV-vis absorption spectra (b) photoluminescence spectra of HMME (black) and Gd-HMME (red) in methanol.

Download Full Size | PPT Slide | PDF

3.2 Acquisition of radiation transition property of first exited triplet state

To obtain the relationship between ΦΔ and τp, radiation transition rates (kp+knp and kq) should be got. Generally speaking, the radiation transition rates were invariable as the surrounding environment of substance changed. In addition, the sum of (kp+knp+kq[O2]) is identical to the total transition rate (AT) of T1 state, which also equals to the reciprocal of τp, thus, kp+knp and kq can be determined through measuring τp under different oxygen concentration.

The typical phosphorescence decay curve of Gd-HMME at 712 nm in deoxygenated solution was exhibited in the inset of Fig. 3, Through fitting the experimental data with a single-exponential function, τp was obtained. Also, τp under varies oxygen concentrations, corresponding to partial oxygen pressure (pO2) from 0 to 0.01 atm, were measured, AT can be got by calculating the reciprocal of τp. The dependence of AT on the oxygen concentration was shown in Fig. 3. It can be found that with the oxygen concentration increases, AT presents a linear increase. By taking the experimental data with a linear fitting, the value of kq was determined to be 0.0002 μs·μM−1. When Gd-HMME solution was deoxygenated, the value of kp+knp was obtained directly to be 0.018 μs−1.

 figure: Fig. 3.

Fig. 3. Total radiation transition rate of Gd-HMME under different dissolved oxygen concentration. Inset: The phosphorescence decay curve of Gd-HMME at 712 nm in deoxygenated solution.

Download Full Size | PPT Slide | PDF

3.3 Determination of triplet state quantum yield under different oxygen concentrations

According to Eq. (1) and Eq. (2), ΦT was determined by kISC, kF and knF, just the parameters in the equation of IF except the product of N0ανρσ. The concentration of Gd-HMME in the mixture keeps a constant in the whole measurement, so N0 was unchanged. In addition, the product of ανρσ is related to the power density of the excitation light, which was invariable throughout the measurement. Therefore, the change of ΦT can be reflected by monitoring the variation of IF. The IF did not change with the oxygen concentration changed, which had been reported in our previous work [23], thus, ΦT was proved to be a constant in our measurement.

According to Eq. (4) and the radiation transition rates obtained above, ΦT of Gd-HMME can be acquired by measuring ΦΔ under different oxygen status. To determine the ΦΔ of Gd-HMME in different oxygen concentrations, a relative method was utilized with RB as the reference and DPBF as the singlet oxygen trapping reagent. It has been well demonstrated that the absorption spectrum of DPBF keeps unchanged under the excitation of 532 nm wavelength laser [33]. However, as photosensitizer existed, the absorbance of DPBF decreased with the irradiation time increased, which was shown in Fig. 4(a). The degradation rate of DPBF (k) was determined by monitoring the decrease of 410 nm wavelength in the absorption spectrum with the irradiation time increase, and can be expressed as the following first-order kinetic equation [35]:

$$\textrm{In}({[\textrm{DPBF}]_0}/[\textrm{DPBF}]) = kt.$$
Here [DPBF]0 is the initial concentration of DPBF, [DPBF] is the concentration of DPBF at a specific reaction time. The time dependence of ln([DPBF]0/[DPBF]) in the mixture of RB, DPBF and Gd-HMME, DPBF of different oxygen concentrations were shown in Fig. 4(b). By fitting the experimental data, k was determined. The absorption of 532 nm laser by RB and Gd-HMME was obtained according to Eq. (7).

 figure: Fig. 4.

Fig. 4. (a) Absorption of DPBF in the mixture with Rose Bengal at different irradiation times, with a 532 nm laser as light source and (b) time dependence of ln([DPBF]0/[DPBF]) for DPBF in mixtures with Gd-HMME in different oxygen concentrations.

Download Full Size | PPT Slide | PDF

Then, ΦΔ of Gd-HMME under different oxygen concentrations were determined, the parameters were listed in Table 2. Figure 5 exhibits the relationship between ΦΔ and kq[3O2]/(kp+knp+kq[3O2]), it can be found that ΦΔ increased as kq[3O2]/(kp+knp+kq[3O2]) increased. ΦT can be determined to be 0.81 by linear fitting the experimental data, which was consist with the reported result [36].

 figure: Fig. 5.

Fig. 5. The relation between singlet oxygen quantum yield and kq[3O2]/(kp+knp+kq[3O2])

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Experimental conditions and calculated singlet oxygen quantum yields of DVDMS and Gd-DVDMS in methanol.

3.4 Relationship between singlet oxygen quantum yield and phosphorescence lifetime

Based on the value of ΦT and radiation transition rates (kp+knp and kq) obtained above, the relationship between ΦΔ and τp was determined to be ΦΔ=0.81-0.0145τp and the above relationship can be shown in Fig. 6. It can be found that ΦΔ decreased with the increase of τp, according to the relationship, ΦΔ can be monitored timely through time resolved spectroscopy measurement using Gd-HMME as photosensitizer.

 figure: Fig. 6.

Fig. 6. Singlet oxygen quantum yield under different phosphorescence lifetime and the linear fitting result.

Download Full Size | PPT Slide | PDF

As we know, PDT always suffers from anoxia as oxygen was consumed in tissue. For Gd-HMME, the phosphorescence decay was depended on oxygen obviously. So, it can be used to reflect the condition of implementation in PDT. The measurements were carried out in pO2 from 0 to 0.01 atm, which is a low oxygen condition in tissue. When pO2 is high, the phosphorescence emission even cannot be seen in the photoluminescence spectra, at this time, the measurement becomes difficult. While, in low pO2, the phosphorescence decay was very sensitive to oxygen. Thus, our detecting strategy is very suitable for ΦΔ detecting in tissue, because pO2 was always in a low level during the treatment process of photodynamic therapy. In normal tissues, pO2 is generally higher than 0.026 atm [37], resulting in a phosphorescence lifetime of less than 15 μs in our detection measurement. It should be recognized that anoxia will be appeared soon as the phosphorescence lifetime becomes bigger than 15 μs. As PDT therapy continued, the level of hypoxia is becoming more and more serious. When pO2 is only half of the lowest oxygen level in tissue (pO2=0.013 atm), τp increases to 23 μs, which was considered to be severe hypoxia at this moment. Furthermore, when pO2 was 0 atm, τp even can reached to 56 μs using Gd-HMME as photosensitizer. With the increase of τp, the level of hypoxia will be monitored, as seen in Fig. 7. In addition, we can also foreknowledge the signal of anoxia using this measurement. In this paper, we proposed a possible way to monitor ΦΔ by monitoring phosphorescence decay from T1 to S0 of Gd-HMME, which has a big different with the reported method [38]. The method proposed here has a possibility to be used in real ΦΔ monitoring. While, the environment in vivo is very complicated, applying this method in vivo, much complicated experiments and factors that may influence the measurement need to be studied in the future.

 figure: Fig. 7.

Fig. 7. Schematic representation of anoxia level.

Download Full Size | PPT Slide | PDF

4. Conclusions

In this paper, singlet oxygen quantum yield was monitored in real time through time resolved spectroscopy measurement using gadolinium labeled hematoporphyrin monomethyl ether (Gd-HMME) as photosensitizer. The relationship between ΦΔ and τp was deduced to be ΦΔ=0.81-0.0145τp, according to the photophysical and chemical process of singlet oxygen generation between Gd-HMME and oxygen. kp+knp was got through measuring the τp under different oxygen concentration. ΦT was analyzed to be inviable from the photoluminescence spectra of Gd-HMME under different oxygen concentration. The value of ΦT was obtained by linear fitting the data of ΦΔ against kq[3O2]/(kp+knp+kq[3O2]). Finally, the relationship between ΦΔ and τp was determined to be ΦΔ=0.81-0.0145τp. Based on this, ΦΔ can be monitored timely by measuring the time resolved spectroscopy. In addition, the identification of anoxia was proposed based on our measurement result. The strategy of monitoring ΦΔ in this work have the possibility to be used in the implementation of quantification PDT.

Funding

National Natural Science Foundation of China (81571720, 81727809).

Disclosures

The authors declare no conflicts of interest.

References

1. A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006). [CrossRef]  

2. A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013). [CrossRef]  

3. D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003). [CrossRef]  

4. S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018). [CrossRef]  

5. H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018). [CrossRef]  

6. N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018). [CrossRef]  

7. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004). [CrossRef]  

8. M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018). [CrossRef]  

9. M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020). [CrossRef]  

10. Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020). [CrossRef]  

11. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006). [CrossRef]  

12. A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008). [CrossRef]  

13. M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005). [CrossRef]  

14. Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976). [CrossRef]  

15. M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).

16. M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).

17. Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008). [CrossRef]  

18. K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001). [CrossRef]  

19. M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006). [CrossRef]  

20. Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005). [CrossRef]  

21. Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007). [CrossRef]  

22. N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017). [CrossRef]  

23. P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015). [CrossRef]  

24. F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993). [CrossRef]  

25. V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014). [CrossRef]  

26. L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005). [CrossRef]  

27. X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011). [CrossRef]  

28. L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014). [CrossRef]  

29. A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005). [CrossRef]  

30. X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011). [CrossRef]  

31. T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013). [CrossRef]  

32. G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007). [CrossRef]  

33. P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014). [CrossRef]  

34. D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005). [CrossRef]  

35. X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009). [CrossRef]  

36. H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015). [CrossRef]  

37. M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020). [CrossRef]  

38. M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
    [Crossref]
  2. A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
    [Crossref]
  3. D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003).
    [Crossref]
  4. S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
    [Crossref]
  5. H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
    [Crossref]
  6. N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
    [Crossref]
  7. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
    [Crossref]
  8. M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
    [Crossref]
  9. M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
    [Crossref]
  10. Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
    [Crossref]
  11. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
    [Crossref]
  12. A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
    [Crossref]
  13. M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
    [Crossref]
  14. Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
    [Crossref]
  15. M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).
  16. M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).
  17. Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
    [Crossref]
  18. K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
    [Crossref]
  19. M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
    [Crossref]
  20. Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
    [Crossref]
  21. Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
    [Crossref]
  22. N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
    [Crossref]
  23. P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
    [Crossref]
  24. F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
    [Crossref]
  25. V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
    [Crossref]
  26. L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
    [Crossref]
  27. X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
    [Crossref]
  28. L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
    [Crossref]
  29. A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
    [Crossref]
  30. X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
    [Crossref]
  31. T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
    [Crossref]
  32. G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
    [Crossref]
  33. P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
    [Crossref]
  34. D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
    [Crossref]
  35. X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
    [Crossref]
  36. H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
    [Crossref]
  37. M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
    [Crossref]
  38. M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
    [Crossref]

2020 (3)

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]

2018 (4)

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]

N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

2017 (1)

N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]

2016 (1)

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

2015 (2)

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]

2014 (3)

V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]

2013 (2)

T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]

A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]

2011 (2)

X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]

X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]

2009 (1)

X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]

2008 (2)

A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]

Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]

2007 (2)

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]

2006 (3)

M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

2005 (5)

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]

A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]

D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]

2004 (1)

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

2003 (1)

D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003).
[Crossref]

2001 (1)

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

1993 (2)

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

1992 (1)

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).

1976 (1)

Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]

Achadu, O. J.

N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]

Bao, L. L.

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

Bastien, E.

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Bezdetnaya, L.

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Bian, J.

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

Blau, R.

N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]

Bruza, P.

M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]

Busch, T. M.

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Callis, J. B.

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Cao, W. W.

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]

P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]

Cao, X.

M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]

Castano, A. P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Chen, H. F.

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

Chen, Q.

Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

Chen, W.

X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]

Chen, Z. L.

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

Cheney, R. T.

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Chi-Shiun, C.

V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]

Chun-Chih, L.

V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]

Dalton, L. R.

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Delmelle, M.

Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]

Di, Z. H.

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

Du, J. J.

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Fan, J. L.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Felsher, D. W.

D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003).
[Crossref]

Feng, G.

X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]

Foley, J. W.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Ge, J. C.

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

Giles, A.

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]

Gollnick, S. O.

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Gouterman, M.

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Green, O.

N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]

Gunn, J. R.

M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]

Guo, L.

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

Hackbarth, S.

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Hamblin, M. R.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Hananya, N.

N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]

Helman, W. P.

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Henderson, B. W.

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Higuchi, T.

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

Huang, H. Q.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Jarvi, M. T.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]

Jimenez-Banzo, A.

A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]

Jockusch, S.

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Kang, Y.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Kapusta, P.

A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]

Karnovsky, M. J.

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).

Khalil, G. E.

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Khan, A. U.

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).

Kikuchi, K.

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

Kim, J. H.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Kim, J. S.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Kousis, P. C.

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Kuo, C. H.

V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]

Lassalle, H. P.

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Li, F. J.

Li, G. Z.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Li, L. L.

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

Li, M. L.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Li, X. L.

X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]

Li, Z. W.

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

Lion, Y.

Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]

Liu, B.

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

Livingston, M.

A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]

Long, S.

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Lu, W.

X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]

Luo, S. M.

Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

Lv, T.

T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]

Master, A.

A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]

Miller, J. B.

H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]

Miura, T.

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

Morgan, J.

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Mroz, P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Nagano, T.

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

Niedre, M. J.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]

Nonell, S.

A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]

Nwahara, N.

N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]

Nyokong, T.

N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]

A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]

O’Riordan, T. C.

D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]

Ogunsipe, A.

A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]

Papkovsky, D. B.

D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]

Patterson, M. S.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]

Peng, X. J.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Pfitzner, M.

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Pfitzner, S.

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

Pogue, B.

M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]

Poliraju, K.

V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]

Pu, Z. J.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Qin, F.

P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]

Qin, Y. F.

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

Ragas, X.

A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]

Raviraj, V.

V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]

Roder, B.

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

Röder, B.

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Ross, A. B.

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Satchi-Fainaro, R.

N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]

Schlothauer, J. C.

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Scholz, M.

M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]

Sen Gupta, A.

A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]

Shabat, D.

N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]

Shao, K.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Shao, Y. J.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Shao, Y. L.

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

Shen, X.

X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]

Siegwart, D. J.

H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]

Snyder, J. W.

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Song, B.

M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]

Song, X. Z.

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Song, Y. F.

Steinbeck, M. J.

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).

Sun, L. D.

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

Sun, W.

T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]

Tan, M. Q.

M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]

Tanaka, K.

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

Thompson, E. K.

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Tian, R. S.

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Turro, N. J.

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Umezawa, N.

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

Urano, Y.

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

Van De Vorst, A.

Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]

Wang, G. L.

M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]

Wang, J. Y.

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Wang, L.

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]

Wang, P.

P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]

P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]

Wang, P. F.

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

Wei, Y. C.

Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]

Wilkinson, F.

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Wilson, B. C.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]

Wong, W.

X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]

X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]

Wu, Q. Y.

L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]

Xia, J.

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

Xing, D.

Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

Xiong, H.

H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]

Xiong, T.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Xu, W.

Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]

Yan, C. H.

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

Yan, Y. F.

H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]

Yan, Y. J.

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

Yao, Y.

X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]

Yuan, J. L.

M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]

Zang, L. X.

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

Zhang, G.

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

Zhang, L. J.

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

Zhang, L. W.

L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]

Zhang, T.

X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]

Zhang, X. F.

X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]

Zhang, Z. G.

P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref]

Zhao, H.

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

Zhao, H. M.

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

Zhao, S.

X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]

Zhao, X. Z.

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Zheng, Y. D.

Zhong, X. Y.

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

Zhou, J.

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

Zhou, K. J.

H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]

Zhu, X.

X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]

Angew. Chem. Int. Edit. (1)

N. Hananya, O. Green, R. Blau, R. Satchi-Fainaro, and D. Shabat, “Highly-efficient chemiluminescence probe for detection of singlet oxygen in living cells,” Angew. Chem. Int. Edit. 56(39), 11793–11796 (2017).
[Crossref]

Biomater. (1)

V. Raviraj, L. Chun-Chih, K. Poliraju, C. Chi-Shiun, and C. H. Kuo, “Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light,” Biomater. 35(21), 5527–5538 (2014).
[Crossref]

Cancer Res. (1)

B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004).
[Crossref]

Chem. Phys Lett. (1)

G. E. Khalil, E. K. Thompson, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, and S. Jockusch, “NIR luminescence of gadolinium porphyrin complexes,” Chem. Phys Lett. 435(1-3), 45–49 (2007).
[Crossref]

Eur. J. Inorg. Chem. (1)

X. Zhu, T. Zhang, S. Zhao, W. Wong, and W. Wong, “Synthesis, structure, and photophysical properties of some gadolinium (III) porphyrinate complexes,” Eur. J. Inorg. Chem. 2011(22), 3314–3320 (2011).
[Crossref]

Free Radic. Biol. Med. (1)

M. Q. Tan, B. Song, G. L. Wang, and J. L. Yuan, “A new terbium (III) chelate as an efficient singlet oxygen fluorescence probe,” Free Radic. Biol. Med. 40(9), 1644–1653 (2006).
[Crossref]

J Biosci. (1)

L. W. Zhang and Q. Y. Wu, “Single gene retrieval from thermally degraded DNA,” J Biosci. 30(5), 599–604 (2005).
[Crossref]

J. Am. Che. Soc. (1)

K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano, “Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen,” J. Am. Che. Soc. 123(11), 2530–2536 (2001).
[Crossref]

J. Am. Chem. Soc. (3)

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, and X. J. Peng, “Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors,” J. Am. Chem. Soc. 140(44), 14851–14859 (2018).
[Crossref]

M. L. Li, Y. J. Shao, J. H. Kim, Z. J. Pu, X. Z. Zhao, H. Q. Huang, T. Xiong, Y. Kang, G. Z. Li, K. Shao, J. L. Fan, J. W. Foley, J. S. Kim, and X. J. Peng, “Unimolecular Photodynamic O2-Economizer to overcome hypoxia resistance in phototherapeutics,” J. Am. Chem. Soc. 142(11), 5380–5388 (2020).
[Crossref]

Y. L. Shao, B. Liu, Z. H. Di, G. Zhang, L. D. Sun, L. L. Li, and C. H. Yan, “Engineering of upconverted metal-organic frameworks for near- infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors,” J. Am. Chem. Soc. 142(8), 3939–3946 (2020).
[Crossref]

J. Biol. Chem. (2)

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap,” J. Biol. Chem. 267(19), 13425–13433 (1992).

M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, “Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film,” J. Biol. Chem. 268(21), 15649–15654 (1993).

J. Biomed. Opt. (2)

Y. C. Wei, D. Xing, S. M. Luo, W. Xu, and Q. Chen, “Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy,” J. Biomed. Opt. 13(2), 024023 (2008).
[Crossref]

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[Crossref]

J. Cancer Res. Clin. (1)

L. J. Zhang, J. Bian, L. L. Bao, H. F. Chen, Y. J. Yan, L. Wang, and Z. L. Chen, “Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo,” J. Cancer Res. Clin. 140(9), 1527–1536 (2014).
[Crossref]

J. Control Release (1)

A. Master, M. Livingston, and A. Sen Gupta, “Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges,” J. Control Release 168(1), 88–102 (2013).
[Crossref]

J. Fluoresc. (1)

D. B. Papkovsky and T. C. O’Riordan, “Emerging applications of phosphorescent metalloporphyrins,” J. Fluoresc. 15(4), 569–584 (2005).
[Crossref]

J. Inorg Organomet Polym. (1)

T. Lv and W. Sun, “Near-infrared emission of lanthanide (III) texaphyrin complexes,” J. Inorg Organomet Polym. 23(1), 200–205 (2013).
[Crossref]

J. Lumin. (1)

X. F. Zhang and X. L. Li, “The photostability and fluorescence properties of diphenylisobenzofuran,” J. Lumin. 131(11), 2263–2266 (2011).
[Crossref]

J. Mol. Catal A:C (1)

X. Shen, W. Lu, G. Feng, Y. Yao, and W. Chen, “Preparation and photoactivity of a novel water-soluble, polymerizable zinc phthalocyanine,” J. Mol. Catal A:C 298(1-2), 17–22 (2009).
[Crossref]

J. Photochem. Photobiol. A (1)

A. Ogunsipe and T. Nyokong, “Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media,” J. Photochem. Photobiol. A 173(2), 211–220 (2005).
[Crossref]

J. Photochem. Photobiol., A: Chem. (1)

N. Nwahara, O. J. Achadu, and T. Nyokong, “In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: first description of the photophysical and surface enhanced raman scattering behaviour,” J. Photochem. Photobiol., A: Chem. 359, 131–144 (2018).
[Crossref]

J. Phys. Chem. C (2)

S. Hackbarth, S. Pfitzner, L. Guo, J. C. Ge, P. F. Wang, and B. Roder, “Singlet oxygen kinetics in polymeric photosensitizers,” J. Phys. Chem. C 122(22), 12071–12076 (2018).
[Crossref]

H. M. Zhao, L. X. Zang, H. Zhao, F. Qin, Z. W. Li, Z. G. Zhang, and W. W. Cao, “Mechanism of gadolinium doping induced room-temperature phosphorescence from porphyrin,” J. Phys. Chem. C 119(19), 10558–10563 (2015).
[Crossref]

J. Phys. Chem. Ref. Data (1)

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Mater. Interfaces (1)

H. Xiong, K. J. Zhou, Y. F. Yan, J. B. Miller, and D. J. Siegwart, “Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy,” Appl,” Mater. Interfaces 10(19), 16335–16343 (2018).
[Crossref]

Nat. Rev. Cancer (2)

D. W. Felsher, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 375–379 (2003).
[Crossref]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Nature (1)

Y. Lion, M. Delmelle, and A. Van De Vorst, “New method of detecting singlet oxygen production,” Nature 263(5576), 442–443 (1976).
[Crossref]

Opt. Express (1)

Opt. Express. (1)

P. Wang, F. Qin, Z. G. Zhang, and W. W. Cao, “Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer,” Opt. Express. 23(18), 240643 (2015).
[Crossref]

Optics Lett. (1)

M. Scholz, X. Cao, J. R. Gunn, P. Bruza, and B. Pogue, “pO2-weighted imaging in vivo by delayed fluorescence of intracellular protoporphyrin IX,” Optics Lett. 45(2), 284–287 (2020).
[Crossref]

Photochem. Photobiol. (3)

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[Crossref]

Y. F. Qin, D. Xing, X. Y. Zhong, J. Zhou, S. M. Luo, and Q. Chen, “Feasibility of using fluoresceinyl cypridina luciferin analog in a novel chemiluminescence method for real-time photodynamic therapy dosimetry,” Photochem. Photobiol. 81(6), 1534–1538 (2005).
[Crossref]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref]

Photochem. Photobiol. Sci. (1)

A. Jimenez-Banzo, X. Ragas, P. Kapusta, and S. Nonell, “Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection,” Photochem. Photobiol. Sci. 7(9), 1003–1010 (2008).
[Crossref]

Photodiagn. Photodyn. (1)

M. Pfitzner, J. C. Schlothauer, E. Bastien, S. Hackbarth, L. Bezdetnaya, H. P. Lassalle, and B. Röder, “Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice,” Photodiagn. Photodyn. 14, 204–210 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Energy level schematic diagram of Gd-HMME and O2 as well as the energy transfer process.
Fig. 2.
Fig. 2. Typical normalized (a) UV-vis absorption spectra (b) photoluminescence spectra of HMME (black) and Gd-HMME (red) in methanol.
Fig. 3.
Fig. 3. Total radiation transition rate of Gd-HMME under different dissolved oxygen concentration. Inset: The phosphorescence decay curve of Gd-HMME at 712 nm in deoxygenated solution.
Fig. 4.
Fig. 4. (a) Absorption of DPBF in the mixture with Rose Bengal at different irradiation times, with a 532 nm laser as light source and (b) time dependence of ln([DPBF]0/[DPBF]) for DPBF in mixtures with Gd-HMME in different oxygen concentrations.
Fig. 5.
Fig. 5. The relation between singlet oxygen quantum yield and kq[3O2]/(kp+knp+kq[3O2])
Fig. 6.
Fig. 6. Singlet oxygen quantum yield under different phosphorescence lifetime and the linear fitting result.
Fig. 7.
Fig. 7. Schematic representation of anoxia level.

Tables (2)

Tables Icon

Table 1. Definitions of variables describing the physical process of phosphorescence production and the singlet oxygen generation.

Tables Icon

Table 2. Experimental conditions and calculated singlet oxygen quantum yields of DVDMS and Gd-DVDMS in methanol.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I F = k F k F  +  k n F + k ISC N 0 α ν ρ σ ,
Φ T = k ISC k F + k n F + k ISC ,
I p = k p k p + k np + k q [ 3 O 2 ] Φ T N 0 α ν ρ σ ,
Φ Δ = Φ T k q [ 3 O 2 ] k p + k n p + k q [ 3 O 2 ] ,
τ p = 1 k p + k np + k q [ 3 O 2 ] ,
Φ Δ = Φ T Φ T τ p ( k p + k np ) .
Φ Δ I abs k = Φ Δ std I abs std k std ,
I abs = I laser ( λ ) ( 1 e σ ( λ ) N L ) d λ .
In ( [ DPBF ] 0 / [ DPBF ] ) = k t .

Metrics