Abstract

We demonstrated an ultrabroadband supercontinuum (SC) generation with high coherence property in all-normal-dispersion (ANDi) Te-based chalcogenide tapered fiber. The fibers made of Ge20As20Se15Te45 core and Ge20As20Se20Te40 cladding glasses were fabricated via isolated stacked extrusion. The waist diameter and length can be accurately controlled by a homemade tapering platform. When the core diameter of the waist was ≤14 μm, the fiber showed an ANDi characteristic in the wavelength range of 1.7–14 μm. A coherent SC generation covered 1.7–12.7 μm was generated in a 7-cm-long tapered fiber, pumped at 5.5 μm. To the best of our knowledge, this is the first SC experimental demonstration in Te-based step-index tapered fiber and the broadest SC generation in chalcogenide tapered fiber when pumped in the normal dispersion regime so far.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Mid-infrared (MIR) supercontinuum (SC) is characterized by broad bandwidth, high brightness, and a certain degree of coherence. Therefore, MIR SC light sources show remarkable potential in various applications, such as tomography [1], food quality monitoring [2], and disease diagnosis [3]. Various fibers made of tellurite [4,5], fluoride [6,7], and chalcogenide (ChG) glasses [8,9] have been used to generate MIR SC. Compared with other glasses, ChG glass exhibits a wider MIR transmission window up to 20 μm and a higher optical nonlinearity up to three orders of magnitude higher than that of silica glasses [10], making them promising candidates for MIR SC generation.

In recent years, many ultrabroadband SCs in step-index ChG fibers are generated by pumping in the anomalous dispersion regime [11]. Zhang et al reported a broadband SC covering 2-12 μm spectral range in a 11-cm-long Ge-Sb-Se fiber pumped at 4.485 μm with 330 fs pulse [12]. Petersen et al experimentally demonstrated the ultrabroad MIR SC spanning from 1.4 to 13.3 μm using an 85-mm-long step-index fiber made of As2Se3 core and Ge10As23.4Se66.6 cladding pumped at 6.3 μm [13]. Ou et al. used a 20-cm-long Ge-Sb-Se step-index fiber with a core diameter of 23 μm pumped with 150 fs pulse at 6 μm and generated a broadband SC covering the 1.8-14 μm region [14]. Cheng et al. obtained a SC spanning from 2 to 15.1 μm in a 3-cm-long As2Se3/AsSe2 fiber pumped at 9.8 μm with a pulse width of 170 fs [15]. In the cases above, SC generation is mainly due to soliton dynamics, such as soliton fission and self-frequency shift. However, this broadening process generates a spectrum with a complex temporal profile, which is sensitive to noise amplification, leading to different spectral components [16]. These disadvantages cause coherent degradation of SCs and reduce resolution or precision in many applications, such as optical coherence tomography [17], ultrashort pulse generation [18], and communications [19].

A common approach to obtain coherent SCs is to pump fibers with an all-normal dispersion (ANDi) profile by using ultrashort lasers [20–22]. In these cases, the fiber exhibits flattened normal dispersion over the entire spectral region of interest, and the SC spectral broadening is mainly as a result of self-phase modulation (SPM) and optical wave breaking (OWB) [23], which can eliminate noise-sensitive soliton dynamics [24,25]. Coherent SC generated in ChG ANDi fibers have been widely studied [26], especially in tapered fibers. Tapering fiber, which is a well-known post-processing technology, can engineer dispersion profiles and increase the optical nonlinearity by reducing the fiber diameter. Al-kadry et al. used a ChG microwire pumped at 1550 nm to generated SC spanning from 960 nm to >2500 nm [27].Wang et al. reported a broadband SC covered from 1.4 to 7.2 μm in an As-S chalcogenide tapered fiber with ANDi profile pumped at 3.25 μm [28]. Tapered fiber with ANDi characteristics can generate SC with high coherence property, but the width of SC is relatively narrow. Te-based chalcogenide glasses exhibit higher nonlinear refractive indices and wider transmission window [29], in which, compared with Se- and S-based ChG glasses, relatively wider SC can be generated.

In this letter, we fabricated a Te-based ChG tapered fiber consisting of Ge20As20Se15Te45 core and Ge20As20Se20Te40 cladding glasses. A coherent broadband SC ranging from 1.7 μm to 12.7 μm was generated in a 7 cm long fiber with a core diameter of 13.4 μm. The tapered fiber showed an ANDi characteristic in the wavelength of 1.7–14 μm.

2. Experimental

2.1 Fiber preparation

The Te-based ChG step-index fiber used in this work was made of Ge20As20Se20Te40 cladding and Ge20As20Se15Te45 core glasses. Two glass rods (core: ∅9 mm × 15 mm, cladding: ∅46 mm × 15 mm) were prepared using high-purity materials (5N) through the melt-quenching method [30]. In addition, the raw materials were purified using a distillation method to reduce optical fiber attenuation. The preform with a constant cladding–core ratio of 5:1 was fabricated using a homemade isolated stacked extrusion machine [30]. The glass rod and preform images (∅9 mm × 6 mm) are shown in Figs. 1(a) and 1(b), respectively. It is need to mentioned that the defects on the fiber surface can generate a large light scattering during the reflection at the glass–air interface. Hence, the sample glass rods and preform should be mechanically polished to reduce the optical loss of the fabricated fiber [31].

 

Fig. 1 (a) Core and cladding glass rods. (b) Extruded preform. Inset: cross-section of the preform. (c) A roll of well-fabricated step-index fiber. Inset: cross-section image of the fiber. (d) Tapered fiber with the core waist diameter of ∼80μm. Inset: I untapered region, II taper waist, III transition region.

Download Full Size | PPT Slide | PDF

The extruded preform was drawn in a fiber-drawing tower (SG Controls, UK) into a step-index fiber with a ~60 μm diameter core and a ~300 μm diameter cladding coated with a ~10 μm thick polyethersulfone jacket [32]. Figure 1(c) shows a roll of well-fabricated step-index fibers. Then, the Te-based ChG tapered fibers were drawn by a homemade tapering platform in accordance with our previous work [33]. Figure 1(d) shows the tapered fiber with a taper waist diameter of ∼80 μm and a robust taper waist allowing the convenient handling of the tapered fiber.

2.2 Properties of measurement

The IR transparency of the core and cladding glass samples was measured by Fourier transform infrared spectroscopy (Thermo Scientific, Nicolet380, USA). Then, the linear refractive indices of the cladding and core glasses as a function of wavelength were measured using an IR ellipsometer (J.A. Woollam IR-VASE II, USA). The attenuation of the fiber in the 4–12 μm range was measured on a 1.2 m long fiber by FTIR (Thermo Scientific, Nicolet5700, USA) via cut back method by removing 50 cm sections of the of the fiber. Fiber geometry was measured by an optical microscope (Keyence, VHX-1000E, JAPAN). The SC generation and measurement of the ChG-tapered fiber are described in a previous study [34]. The pump pulse generated from the tunable OPA system with a repetition rate of 1 kHz was ~150 fs, and the central wavelength can be tuned from 1 μm to 8 μm. The beam from the OPA was coupled via a CaF2 lens with a focal length of 75 mm into the fiber. Then, the SC output from the fiber was directly injected into an infrared spectrometer (Infrared systems, FPAS, USA) equipped with liquid nitrogen-cooled MCT detector with a sensitivity range of 1 μm to 16 μm. To eliminate high-order effects, we applied long-pass filters as order-sorting filters.

3. Results and discussion

3.1 Optical properties of Te-ChG fiber

Figure 2 shows the measured refractive indices of the core and cladding glasses and the calculated numerical aperture (NA). At the wavelength of 5.5 μm, the refractive indices of core and cladding glasses were approximately 3.15 and 3.12, respectively. The measured refractive indices of both glasses were fitted to the Sellmeier formula [35]:

n2(λ)1=i=13Biλ2λ2Ci.
In this formula, n(λ)is the refractive index, λis the wavelength in micrometers. Biand Ciare the Sellmeier coefficients. The NA of the fiber was ~0.40 in the wavelength range of 4 μm to 12 μm. Figure 3 shows the attenuation of the fiber in the wavelength range of 3–11 μm. This fiber exhibited a minimum loss of 3.9 dB/m at 6.8 μm. The absorption bands that centered at 4.5, 5, 6.2, and 7.8 μm were due to Se–H, Ge–H, H–O–H, and Ge–O impurity bonds, respectively. The transmittance spectrum of the 5 mm thick core glass sample is indicated in Fig. 3 inset, and the transmittance can reach 55% in the wavelength range of 2–15 μm.

 

Fig. 2 Measured refractive index of the fiber core and cladding glasses and calculated NA of the fiber.

Download Full Size | PPT Slide | PDF

 

Fig. 3 Measured optical loss in the fiber. Inset: Transmittance spectrum of the core glass sample.

Download Full Size | PPT Slide | PDF

3.2 ANDi fiber design

Tapering fiber is an effective method to engineer the dispersion to ANDi profiles [36]. During the tapering process, material dispersion is compensated by waveguide dispersion with reducing the fiber diameter, which results in zero-dispersion wavelength (ZDW) blue shifting. When the diameter of the fiber waist is reduced to a certain value, the dispersion profiles will show an ANDi characteristic in the range of interest.

The dispersion characteristic curves with various core diameters in the fiber-tapered region are illustrated in Fig. 4. With the decrease of the fiber core diameter at the taper waist from 60 μm to 20 μm, the ZDW gradually blue shifted from 10.4 μm to 8 μm. When the fiber core diameter was ≤14 μm, the dispersion of the fiber exhibited an ANDi characteristic in the wavelength range of 1.5–14 μm. Given that the contribution of the higher-order modes to SC broadening is relatively insignificant if the pump pulse is sufficiently short (≤10 ps) [37], the results here only presented the fundamental mode dispersion.

 

Fig. 4 Calculated fundamental mode dispersion characteristic curves of Te-based ChG fibers with various core diameters.

Download Full Size | PPT Slide | PDF

The dispersion slope at the pumping wavelength of the fiber also played an important role in the spectral broadening on the red side [38]. The effect of dispersion on spectral broadening is weak when the fiber exhibited a near-zero flattened ANDi dispersion profile, and SPM plays an important role for spectral broadening. In this case, SPM-induced spectral broadening is larger on the blue side than the red side, since the trailing edge of laser pulse is steeper than its leading edge due to the effect of self-steepening (SS). However, the effect of SS on pulse shape will be compensated by the effect of the dispersion by increasing the dispersion slope at the pumping wavelength, and the trailing edge of output pulse will become less steep, which then lead to large SPM-induced spectral broadening on the red side [38]. Based on the analysis above, we calculated the dispersion slope of the ANDi profiles at pumping wavelengths of 5.5 and 6.5 μm. At the wavelength of 5.5 μm, the fiber possessed a chromatic dispersion value of −7.8, −7.4, and −8.7 ps/(km⋅nm) and a dispersion slope of 0.007, 0.0048, and 0.0039 ps/(km⋅nm2) by keeping the core diameters of 13.4, 10, and 8 μm, respectively. The result above demonstrated that the dispersion slope decreased gradually when the fiber core diameter decreased from 13.4 μm to 8 μm, and dispersion indicated similar trends at a wavelength of 6.5 μm. On the other hand, the dispersion flatness gradually worsened as waist core diameter decreased. According to the result above, a tapered fiber with 13.4 μm waist core diameter was selected to obtain large spectral broadening on the red side.

3.3 SC generation in ANDi fiber

We fabricated a 7 cm long tapered fiber with 13.4 μm waist core diameter to generate the SC. Figure 5 shows the dependence of the resulting SC spectrum at −30 dB under maximum pump power (25mW, 22mW and 19mW) at different pump wavelengths of 4.5, 5.5, and 6.5 μm in the normal dispersion regime, respectively. When pumped at 4.5 μm, the SC bandwidth spanned only from 1.8 μm to 10.5 μm, as shown in Fig. 5(a). It is well known that strong SPM is the dominant broadening mechanism in the initial stage when pumping in the normal dispersion regime. After that, OWB caused by the self-steeping and third-order dispersion could result in significant blue shift and red shift of the spectrum [10]. Due to the asymmetric group velocity dispersion profile, the spectrum broadening on the short wavelength side is not as efficient as that on the long wavelength side, leading to an asymmetric shape of the spectrum [25]. When pumping wavelength was increased to 5.5 μm, the long wavelength edge of SC spectrum was extended, and the widest SC covering from 1.7 μm to 12.7 μm was generated, as shown in Fig. 5(b). In fact, it is the decrease of the laser intensity by Se–H absorption band at ∼4.5 μm that reduced spectral broadening when pumped at 4.5 μm. On further increasing the pumping wavelength to 6.5 μm, the SC spectrum becomes slightly narrow from 2.2 μm to 11.1 μm under 19mW laser power, as shown in Fig. 5(c). The SC spectrum results pumped at different wavelength showed that a pump wavelength of 5.5 μm was more efficient than 6.5 μm, which due to the higher pumping power at 5.5 μm. The spectral dips at ∼4.5, ∼6.2, and ∼7.8 μm also corresponded to the absorption bands of Se–H, H–O–H, and Ge–O, respectively. For comparison, the SC broadening in an untapered fiber with the same length of the taper fibers was also obtained under the same pumping conditions, as shown in Fig. 5(d). The result showed that the SC spectrum from untapered fiber spanning from 2.6 μm to 10.4 μm was relatively narrower than that of tapered fibers. The large spectral extension was generated in the tapered fiber because of small effective mode area (∼92 μm2) and large optical nonlinearity (∼334 W−1km−1) at the taper waist.

 

Fig. 5 Measured SC spectral generated from Te-based ChG tapered fiber with different pumping wavelengths of (a) 4.5 μm, (b) 5.5 μm, and (c) 6.5 μm and (d) an untapered fiber pumped at 5.5 μm.

Download Full Size | PPT Slide | PDF

3.4 Numerical simulation for the coherence properties of SC

To investigate SC spectrum coherence property, we used the following equation on the modulus of the complex degree of coherence [16,39]:

|g12(1)(λ,t1t2)|=|E1(λ,t1)E2(λ,t2)|E1(λ,t1)|2|E2(λ,t2)|2|
where E is the electric field intensity, angular brackets represent an ensemble average over independently generated pairs of SC spectra, and t is the time measured at the scale of the temporal resolution of the spectrometer used to solve these spectra. To focus on the wavelength dependence of the coherence, t1t2=0 was adopted. As expected, g12(1)=1 is completely coherent, andg12(1)=0 is entirely incoherent.

According to Eq. (2), the maximum broadening SC generation in the Te-based tapered fiber was simulated to investigate the coherence property, as shown in Fig. 6. The simulated spectrum (green curve) and measured spectrum were almost similar at the wavelength range of 3–12 μm. As illustrated in Fig. 6, g12(1)=1was observed over the wavelength range of 2–12.7 μm, which corresponded to perfect coherence. Both SPM and OWB play an important role for spectral broadening, which create new wavelength components with a phase related to the injected pulse, eliminating noise-sensitive soliton dynamics [25]. Therefore, the SC spectra can keep the coherence property of the pump laser. In fact, a near-zero flattened ANDi dispersion property also reduces the gain for noise amplifying nonlinear effects and results in a SC with high coherence property [40].

 

Fig. 6 Simulated the SC spectrum (green curve, left axis) and its coherence property (red curve, right axis) in Te-based tapered fiber.

Download Full Size | PPT Slide | PDF

4. Conclusion

We have reported a 1.7–12.7 μm ultrabroadband SC generation with high coherent property from a 7 cm long ANDi Te-based ChG tapered fiber pumped at 5.5 μm. To the best of our knowledge, this SC is the broadest one that was obtained experimentally in tapered fibers when pumped in the normal dispersion regime. SC generation was also numerically simulated to analyze the accuracy of measured result and coherence property. Our results showed that ultrabroadband SC generation with high coherence property can be obtained in all-normal-dispersion ChG tapered fiber, which has considerable practical potential in various applications requiring extremely high coherence.

Funding

National Natural Science Foundation of China (61435009, 61377099, 61627815); K.C. Wong Magna Fund, Ningbo University; China Postdoctoral Science Foundation (2018M642386).

References

1. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011). [CrossRef]   [PubMed]  

2. T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017). [CrossRef]  

3. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018). [CrossRef]   [PubMed]  

4. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef]   [PubMed]  

5. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37(11), 2127–2129 (2012). [CrossRef]   [PubMed]  

6. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009). [CrossRef]  

7. F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016). [CrossRef]   [PubMed]  

8. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014). [CrossRef]   [PubMed]  

9. T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2-15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015). [CrossRef]  

10. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016). [CrossRef]   [PubMed]  

11. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018). [CrossRef]  

12. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016). [CrossRef]  

13. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014). [CrossRef]  

14. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016). [CrossRef]   [PubMed]  

15. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016). [CrossRef]   [PubMed]  

16. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002). [CrossRef]   [PubMed]  

17. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002). [CrossRef]   [PubMed]  

18. J. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12(11), 2423–2428 (2004). [CrossRef]   [PubMed]  

19. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000). [CrossRef]  

20. C. Huang, M. Liao, W. Bi, X. Li, L. Hu, L. Zhang, L. Wang, G. Qin, T. Xue, D. Chen, and W. Gao, “Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion,” Photon. Res. 6(6), 601–608 (2018). [CrossRef]  

21. M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017). [CrossRef]  

22. M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017). [CrossRef]   [PubMed]  

23. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010). [CrossRef]  

24. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011). [CrossRef]   [PubMed]  

25. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011). [CrossRef]   [PubMed]  

26. A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016). [CrossRef]  

27. A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015). [CrossRef]   [PubMed]  

28. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017). [CrossRef]   [PubMed]  

29. A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007). [CrossRef]  

30. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015). [CrossRef]   [PubMed]  

31. S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014). [CrossRef]   [PubMed]  

32. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015). [CrossRef]  

33. B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017). [CrossRef]  

34. B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017). [CrossRef]  

35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

36. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005). [CrossRef]   [PubMed]  

37. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016). [CrossRef]   [PubMed]  

38. Q. Li, L. Liu, Z. Jia, G. Qin, Y. Ohishi, and W. Qin, “Increased red frequency shift in coherent mid-infrared supercontinuum generation from tellurite microstructured fibers,” J. Lightwave Technol. 35(21), 4740–4746 (2017). [CrossRef]  

39. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]  

40. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
    [Crossref] [PubMed]
  2. T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
    [Crossref]
  3. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref] [PubMed]
  4. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref] [PubMed]
  5. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37(11), 2127–2129 (2012).
    [Crossref] [PubMed]
  6. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
    [Crossref]
  7. F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
    [Crossref] [PubMed]
  8. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref] [PubMed]
  9. T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2-15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
    [Crossref]
  10. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
    [Crossref] [PubMed]
  11. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
    [Crossref]
  12. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  13. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  14. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref] [PubMed]
  15. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  16. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  17. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [Crossref] [PubMed]
  18. J. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12(11), 2423–2428 (2004).
    [Crossref] [PubMed]
  19. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
    [Crossref]
  20. C. Huang, M. Liao, W. Bi, X. Li, L. Hu, L. Zhang, L. Wang, G. Qin, T. Xue, D. Chen, and W. Gao, “Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion,” Photon. Res. 6(6), 601–608 (2018).
    [Crossref]
  21. M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
    [Crossref]
  22. M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
    [Crossref] [PubMed]
  23. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [Crossref]
  24. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  25. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
    [Crossref] [PubMed]
  26. A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
    [Crossref]
  27. A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
    [Crossref] [PubMed]
  28. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
    [Crossref] [PubMed]
  29. A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
    [Crossref]
  30. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
    [Crossref] [PubMed]
  31. S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
    [Crossref] [PubMed]
  32. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  33. B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
    [Crossref]
  34. B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
    [Crossref]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  36. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
    [Crossref] [PubMed]
  37. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
    [Crossref] [PubMed]
  38. Q. Li, L. Liu, Z. Jia, G. Qin, Y. Ohishi, and W. Qin, “Increased red frequency shift in coherent mid-infrared supercontinuum generation from tellurite microstructured fibers,” J. Lightwave Technol. 35(21), 4740–4746 (2017).
    [Crossref]
  39. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  40. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]

2018 (3)

2017 (8)

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Q. Li, L. Liu, Z. Jia, G. Qin, Y. Ohishi, and W. Qin, “Increased red frequency shift in coherent mid-infrared supercontinuum generation from tellurite microstructured fibers,” J. Lightwave Technol. 35(21), 4740–4746 (2017).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

2016 (7)

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref] [PubMed]

F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
[Crossref] [PubMed]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

2015 (4)

2014 (3)

2012 (1)

2011 (3)

2010 (1)

2009 (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

2008 (1)

2007 (1)

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (2)

2000 (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Abouraddy, A. F.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Agger, C. S.

Al-Kadry, A.

Amraoui, M. E.

Apolonski, A.

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Bang, O.

Bartelt, H.

Ben Salem, A.

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Bi, W.

Bizheva, K.

Bosman, G. W.

Boussard-Plédel, C.

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Bureau, B.

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Chen, D.

Chen, F.

Cheng, T.

Cherif, R.

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Cimalla, P.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Coen, S.

Cordeiro, C. M. B.

Coulombier, Q.

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Cronin-Golomb, M.

Cui, S.

Dai, S.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Diouf, M.

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Domachuk, P.

Drexler, W.

Duan, Z.

Dudley, J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Engelsen, S. B.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Falk, P.

Farries, M.

Feehan, J. S.

Fercher, A. F.

Feurer, T.

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Frosz, M.

Fuhrberg, P.

Furniss, D.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

George, A. K.

Han, X.

Hartung, A.

Heidt, A. M.

Hermann, B.

Hooper, L. E.

Hu, L.

Huang, C.

Huang, Y.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Jia, Z.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Knight, J. C.

Koch, E.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Krok, P.

Kubat, I.

Kumar, A.

Lamrini, S.

Li, G.

Li, L.

Li, Q.

Li, X.

Liao, M.

Liu, L.

Liu, S.

Liu, Z.

Lloyd, G. R.

Lucas, J.

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Lucas, P.

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Luo, B.

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Matsumoto, M.

Messaddeq, Y.

Mittasch, M.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Møller, U.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Moselund, P. M.

Mosley, P. J.

Muir, A. C.

Nagasaka, K.

Nallala, J.

Napier, B.

Nie, Q.

North, T.

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Ohishi, Y.

Omenetto, F. G.

Ou, H.

Pan, Z.

Peng, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

Petersen, C. R.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Povazay, B.

Price, J. H. V.

Prtljaga, N.

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Qin, G.

Qin, W.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ringsted, T.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Rochette, M.

Rohwer, E. G.

Russell, P. S. J.

Saghaei, H.

Saini, T. S.

Salem, A. B.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sato, K. I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sattmann, H.

Scherzer, E.

Scholle, K.

Schwoerer, H.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Shen, X.

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Siesler, H. W.

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

Sinha, R. K.

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Stone, N.

Sujecki, S.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, L.

Sun, Y.

Suzuki, T.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Tao, G.

Tezuka, H.

Tuan, T. H.

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wague, A.

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref] [PubMed]

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Walther, J.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Wang, A.

Wang, F.

Wang, K.

Wang, L.

Wang, R.

Wang, S.

Wang, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Wang, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Ward, J.

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Wolchover, N. A.

Wu, C.

Wu, Y.

Xu, D.

Xu, H.

Xu, P.

Xu, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Xue, T.

Xue, X.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Yan, X.

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37(11), 2127–2129 (2012).
[Crossref] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yang, P.

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

Yang, Z.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yao, C.

You, C.

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zghal, M.

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, L.

Zhang, P.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

B. Luo, Y. Wang, S. Dai, Y. Sun, P. Zhang, X. Wang, and F. Chen, “Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA,” J. Lightwave Technol. 35(12), 2464–2469 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhao, Z.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adv. Mater. (1)

A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater. 19(22), 3796–3800 (2007).
[Crossref]

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Appl. Sci. (Basel) (1)

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. (Basel) 8(5), 707 (2018).
[Crossref]

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Infrared Phys. Technol. (1)

B. Luo, Y. Wang, Y. Sun, S. Dai, P. Yang, P. Zhang, X. Wang, F. Chen, and R. Wang, “Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper,” Infrared Phys. Technol. 80, 105–111 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies, and Y. Xu, “High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Biomed. Opt. (1)

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

J. Cereal Sci. (1)

T. Ringsted, H. W. Siesler, and S. B. Engelsen, “Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy,” J. Cereal Sci. 75, 92–99 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Mod. Opt. (1)

M. Diouf, R. Cherif, A. Ben Salem, and A. Wague, “Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre,” J. Mod. Opt. 64(13), 1335–1341 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Eng. (1)

A. Ben Salem, M. Diouf, R. Cherif, A. Wague, and M. Zghal, “Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber,” Opt. Eng. 55(6), 066109 (2016).
[Crossref]

Opt. Express (9)

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, and G. Tao, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref] [PubMed]

S. Cui, C. Boussard-Plédel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 μm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[Crossref] [PubMed]

P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
[Crossref] [PubMed]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

J. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12(11), 2423–2428 (2004).
[Crossref] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref] [PubMed]

Opt. Lett. (10)

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett. 37(11), 2127–2129 (2012).
[Crossref] [PubMed]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, and W. Qin, “Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation,” Opt. Lett. 41(3), 634–637 (2016).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
[Crossref] [PubMed]

A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
[Crossref] [PubMed]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref] [PubMed]

Photon. Res. (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Core and cladding glass rods. (b) Extruded preform. Inset: cross-section of the preform. (c) A roll of well-fabricated step-index fiber. Inset: cross-section image of the fiber. (d) Tapered fiber with the core waist diameter of ∼80μm. Inset: I untapered region, II taper waist, III transition region.
Fig. 2
Fig. 2 Measured refractive index of the fiber core and cladding glasses and calculated NA of the fiber.
Fig. 3
Fig. 3 Measured optical loss in the fiber. Inset: Transmittance spectrum of the core glass sample.
Fig. 4
Fig. 4 Calculated fundamental mode dispersion characteristic curves of Te-based ChG fibers with various core diameters.
Fig. 5
Fig. 5 Measured SC spectral generated from Te-based ChG tapered fiber with different pumping wavelengths of (a) 4.5 μm, (b) 5.5 μm, and (c) 6.5 μm and (d) an untapered fiber pumped at 5.5 μm.
Fig. 6
Fig. 6 Simulated the SC spectrum (green curve, left axis) and its coherence property (red curve, right axis) in Te-based tapered fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ )1= i=1 3 B i λ 2 λ 2 C i .
| g 12 (1) ( λ, t 1 t 2 ) |=| E 1 ( λ, t 1 ) E 2 ( λ, t 2 ) | E 1 ( λ, t 1 ) | 2 | E 2 ( λ, t 2 ) | 2 |

Metrics