Abstract

We report an effect potentially harmful occurring in regenerative amplifiers due to stimulated Brillouin scattering (SBS). Most high energy laser facilities use phase-modulated pulses to prevent the transverse SBS effect in large optical components and to smooth the focal spot on target. However, this kind of pulse format may undergo a detrimental effect known as frequency modulation to amplitude modulation (FM-AM) conversion in the presence of spectral distortions. In the present letter, we show experimentally and numerically, that SBS can also potentially be created in the regenerative amplifier located in the front-end. In this scenario, some of the side bands of the pulse reflected by regen end-cavity mirror may act as a seed for SBS in an optical component, if the pulse spectrum contains frequency components exactly separated by the Brillouin frequency shift. This self-seeded SBS induces amplitude modulation with a nonlinear dependence that may be detrimental during down-stream propagation. However, we show that a careful choice of the modulation frequencies can mitigate this effect.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The National Ignition Facility (NIF) [1] and the Laser Mégajoule (LMJ) [2] laser facilities are designed to perform laser-matter interaction experiments under extreme temperatures, pressures and densities. These experiments aimed at Inertial Confinement Fusion (ICF) require nanosecond pulses with high laser powers and energies. For these two facilities, beam aperture areas as large as ~1250 cm2 are used. The goal is to reduce the fluence for the components traversed by the highest energies. However, the transverse interaction length is subsequently increased for any potential nonlinear process. Among them, transverse stimulated Brillouin scattering has a low threshold and must be avoided. A Stokes wave coupled to the main laser pulse (pump wave) is growing through the optical component and an acoustic wave is generated perpendicular to the direction of the main beam. This process may be powerful enough to damage the optical component. As the efficiency of this effect strongly dependents on the intensity, a standard mitigation technique is to spectrally broaden the pulse in the front-end by using sinusoidal phase modulation, therefore lowering the peak power spectral density [3]. As a result, the laser bandwidth is broadened and SBS is frustrated while the temporal pulse shape is preserved. Moreover, ICF lasers require a smooth, millimeter-scale focal spots to prevent laser plasma interaction and backscatter. The focal spots are shaped with phase plates, but this operation does not change the “pure speckle” nature of the light at the target. To smooth the beam, the laser pulse spectrum is broadened even further with a second sinusoidal phase modulation and the various frequency components are dispersed with a grating. Consequently, the speckle pattern moves rapidly over time making the focal spot smooth for the plasma [4,5]. Given their current architectures, such phase modulated beams need to be amplified along the NIF and LMJ beamlines. But, this phase (i.e. frequency) modulation leads to an unwanted power (i.e. amplitude) modulation in the presence of spectral amplitude and/or phase distortions in the optical components of the beam path. This effect is termed Frequency Modulation to Amplitude Modulation conversion (FM-AM). To mitigate FM-AM conversion, different compensation solutions have been considered [6]. When the transfer function is caused by linear optical phenomena, one can pre-compensate the effect with the inverse transfer function to cancel the generation of FM-AM conversion. Even certain non-linear transfer functions like the third harmonic generation can be partially compensated [7]. In the following, we will show that spectral broadening to avoid SBS in the final optics and smooth the focal spot may generate SBS in the front-end of high-power lasers with a mechanism that was not previously considered so far in this context and cannot be readily pre-compensated. In this paper, we discuss an SBS effect in a regenerative amplifier [1,8] where the pulse is circulating between two mirrors. This cavity exhibits pulse overlap in a z-cut DKDP crystal used in a Pockels cell. Inside this crystal, a pump and a Stokes waves interact when the spacing between the various frequencies matches the Stokes shift of the material for Brillouin interaction.

Some first observations of the amplified pulse through the NIF regenerative amplifier showed high FM-AM conversion (>20%), when the first sinusoidal modulation frequency was inadvertently allowed to drift away from the nominal 3.0 GHz to ~3.2 GHz, while the second modulation frequency was set to the nominal 17 GHz. The nature of the AM generated in the time domain was qualitatively different from the usual, exhibiting transient, tapered growth of AM with time. This behavior was not observed for the nominal 3.0 GHz modulation frequency (Fig. 1(a)).

 

Fig. 1 (a) First observation of large and tapered AM (with modulation frequencies of 3.24 and 17 GHz) overlaid with low AM, off-resonance situation (3 GHz and 17 GHz modulation frequencies). (b) AM modulation (%) measured when sweeping the modulation frequency of a single tone. (c) Resulting optical spectrum at SBS resonance near 13.77 GHz with the Stokes shifted line clearly visible and about 18% of AM in the time-domain. Note the artifact present on all measurements around −2 GHz. (d) similar plot off-resonance, for 13.9 GHz and about 3% AM in plot (b).

Download Full Size | PPT Slide | PDF

Subsequent investigations used a single tone sinusoidal modulation which frequency was swept from 13.65 GHz to 13.9 GHz. A resonant phenomenon was found in the time-domain with a dramatic AM increase observed when the modulation frequency was set to ~13.77 GHz (Fig. 1(b)). Measurements of the optical spectrum were also taken at resonance (Fig. 1(c)) and off resonance (Fig. 1(d)) confirming this interpretation. The resonant frequency is close to the Brillouin Stokes shift in DKDP crystal of 13.94 GHz [9]. These results suggested that a Brillouin coupling of the wave with itself might occur. After subsequent literature search, some similar phenomenon has been featured [10] to intentionally generate high frequency temporal amplitude modulations beyond Mach-Zehnder modulator bandwidth using so-called Brillouin selective sideband amplification. It was achieved by tuning the wavelength of the pump and the signal, two different oscillators producing counter-propagating pulses to the same wavelength. In our case, the sideband spacing (defined by the modulation frequency) is the tuning parameter as the pump and signal beams are the same.

We will describe firstly the environment and the context the SBS arises from. Then, some experimental results will be presented. We will show that our simulation results are in perfect agreement with what has been observed. We will address the LMJ issue and show how, like for the NIF case, a careful choice of the modulation frequencies enables mitigation of SBS-induced FM-AM in the front-end while preserving both the transverse SBS suppression for the final optics and the smoothing function for the focal spot. This led to a change of the SBS modulation frequency on LMJ from 2 GHz to 1.9 GHz.

2. SBS environment

SBS arises from a DKDP crystal placed in a regenerative amplifier. This amplifier is a part of the Pre-Amplifier Module (PAM) which amplifies a nanojoule pulse to a Joule pulse (Fig. 2). To reach such high gain, we use a multi-pass regenerative amplifier configuration. This means that the pulse is trapped in the cavity and dumped out the cavity with a double step Pockels cell by switching the light polarization state.

 

Fig. 2 Pre-Amplifier Module (PAM) set-up. M: mirror, P.C.: Pockels cell, λ/4: quarter wave plate, P: polarizer.

Download Full Size | PPT Slide | PDF

Figure 3 shows the polarization state during the amplification process (a) and when the pulse is dumped out at the last round trip (b). The illustration only covers the sections of the regenerative amplifier where the state of polarization varies. Elsewhere, the state of polarization remains the same. The active medium made of Nd:Phosphate glass (LHG8), the quarter-wave plate, the polarizer, and the mirror are displayed. We consider two states of polarization with the wave moving forwards (from left to right) and backwards (from right to left). The state of polarization is defined by a retardation ΔΦ the X and Y polarizations. When ΔΦ is respectively zero, π/2, -π/2 and π the state of polarization is horizontal, left circular, right circular and vertical. We also note that self-seeded SBS cannot occur when the forward wave and the backward wave have perpendicular states of polarization like in (Fig. 3(a)) and (Fig. 3(b)). However, in the DKDP crystal, the polarizations of the forward and backward waves gradually become aligned and the Brillouin interaction can occur (see yellow inset “SBS area” in the figures below). Next, during the last round trip (case b) the middle part of the DKDP encounters left circular polarization, again Brillouin effect occurs and it is pointed out with the same tag. Obviously, the state of polarization is linear in the polarizer and in one of the two protective Pockels windows but their thicknesses and the Brillouin gain in the silica are not large enough to generate efficient FM-AM conversion. There is no optical component beyond the polarizer except the folding mirror.

 

Fig. 3 State of polarization in the LMJ regenerative amplifier. Top: forward wave. Bottom: backward wave. The state of polarization can be split up in 2 perpendicular vectors where ΔΦ represents their phase shift. (a) During the amplification SBS area is underlined in the DKDP, in the LHG8 glass rod the polarizations are perpendicular. (b) At the last round trip, the glass rod still experiences perpendicular polarization but in the DKDP the SBS area moves to the middle of the Pockels cell.

Download Full Size | PPT Slide | PDF

Given the relatively narrow Brillouin linewidth (Γ/2π ≈30 MHz) and any significant overlap, the only option for an efficient, self-seeded SBS energy transfer is to have the frequency difference of two side-bands to match exactly the Brillouin shift of the DKDP crystal.

The overall effect takes account of spatial and temporal coupling with the forward and backward waves, each one being either the pump or the Stokes wave. There is also a cumulative effect due to the consecutive round trips in the cavity and besides, we need to consider the evolution of the state of polarization along the medium. At last, the Pockels cell is placed 350 mm away from the rear cavity mirror. Thus, a 2.5 ns gap in the pulse duration can be found where the pulse does not overlap with itself.

We will present some experimental results illustrating the SBS effect in the LMJ regenerative amplifier. These results are consistent with our simulation tool. Then, we will show what we have figured out to mitigate SBS-driven FM-AM conversion in the case of the LMJ facility.

3. SBS measurements

In order to maximize the observed effect, the Pockels cell is driven by a first voltage step near the rear mirror in order to have a longer overlap of the forward and backward waves with the same state of polarization in the DKDP crystal (Fig. 4). The regenerative amplifier operates with a dumping at saturation; it delivers 37 mJ energy for 45 round trips. The spatial shape is a square flat top of 0.072 cm2 area. We use a 20 ns square pulse duration with adjustable sinusoidal phase modulation in frequency, fm and depth, m.

E(t)=Π[20ns](t)eimsin(2πfmt)
where E(t) is the electric field of the injected wave in the cavity, Π(t) the rectangular function, m the modulation depth and fm the sine modulation frequency. But because of saturation and square pulse distortion, the temporal shape has a slight downward slope at the output.

 

Fig. 4 Experimental configuration for FM-AM conversion measurement. As opposed to the LMJ configuration, first voltage step on the Pockels cell is applied closer to the rear mirror polarization in order to maximize the SBS effect. (a) During the amplification the SBS area is larger in the DKDP compared to SBS area in Fig. 3(a). (b) At the last round trip, in the DKDP the SBS area still move to the middle of the Pockels cell.

Download Full Size | PPT Slide | PDF

The measurements are made with a 30 GHz bandwidth oscilloscope (Tektronix DPO73304D) and a 1 GHz resolution spectrograph [11]. We varied m and fm. The most efficient FM-AM conversion is obtained with a seed pulse featuring a sine modulation of 13.78 GHz frequency (consistent with the 13.77 GHz obtained during the NIF experiment) and a 1.1 radian depth (Fig. 5).

 

Fig. 5 a: Regenerative output temporal profile with a 20 ns injected pulse at 13.78 GHz frequency modulation and 1.1 radian modulation depth. b: Optical spectral profile of the output pulse in blue. The green curve represents the normalized input spectral profile.

Download Full Size | PPT Slide | PDF

The spectral profile shows the energy shift towards low frequencies. Besides, the conversion operates with sub-multiple frequencies as long as at least two frequencies of the pulse spectrum are separated by 13.78 GHz. As an example, a third of the DKDP Brillouin frequency (fm = 4.59 GHz) still generates an FM-AM conversion (Fig. 6), just a higher modulation depth is needed to enhance the effect.

 

Fig. 6 a: Output temporal profile with a fm = 4.59 GHz and m = 1.8 rad modulated pulse. b: Spectral profile (green input spectrum).

Download Full Size | PPT Slide | PDF

As shown in Figs. 5 and 6, an intensity of 35 MW/cm2 is enough to yield 30% FM-AM conversion ratio. With shorter pulses, the intensity increases but the overlap time lowers; a conversion can be efficient till 5 ns pulse duration with a maximum at the beginning and the end of the pulse time duration.

Then, we scanned the sine phase modulation from 3 to 18 GHz to unveil the linewidth and the harmonics of the SBS effect in the regenerative amplifier (Fig. 7). From the Brillouin frequency (13.8 GHz) of the DKDP crystal, we have got respectively 6.9, 4.6, 3.45 GHz harmonics. We also detected at low level, the Brillouin frequency (16.3 GHz) of the silica protective window of the Pockels cell and the polarizer with their harmonic at 8.15 GHz.

 

Fig. 7 FM-AM conversion versus the phase modulation frequency scan of the seed pulse. Detection of Brillouin effect in the Pockels cell window and in the polarizer.

Download Full Size | PPT Slide | PDF

Another test was performed by moving the quarter wave plate between the Pockels cell and the Phosphate glass rod to overlapped forward and backward waves with collinear polarizations in the LHG8 rod. By doing so, we added the 14.1 GHz Brillouin frequency of the Phosphate glass to the previous curve. That confirms the preferred placement of the quarter wave plate in the regenerative amplifier set up.

LMJ uses two modulation frequencies: 2 GHz to prevent Brillouin effect in the final optics where the intensity is high, and the beam transverse dimensions are large and 14.25 GHz to perform focal spot smoothing on the target [5]. The first is mandatory to ensure laser machine safety, but the second is optional. Routine operations use the both frequencies together. Consequently, we test the 14.25 GHz smoothing frequency modulation with a low 1 radian modulation depth (Fig. 8). Even though a wide difference with the DKDP Brillouin frequency, we can see the 0.47 GHz beat frequency (14.25-13.78) in the temporal profile of a 10 ns pulse duration. The 14.25 GHz frequency is designed with a 5 radians modulation depth then the Brillouin effect is much lower than the one shown in the Fig. 8 since it decreases the power spectral density.

 

Fig. 8 Temporal profile under a 14.25 GHz – 1 radian injection modulation.

Download Full Size | PPT Slide | PDF

That experience would help the understanding and the reckoning of the Brillouin bandwidth in our configuration. All these experiments are done with an appropriate sine modulation depth, the real FM-AM conversion in nominal condition is hardly detectable. Nevertheless, we need to lower this effect to prevent potential issues in the final optics assembly.

4. Numerical simulation of SBS

4.1 Simulation code

A code has been developed which computes the time dependent SBS of two counter-propagating waves in an SBS amplifier configuration (Fig. 9). Making the slowly varying amplitude approximation for both the electromagnetic waves whose polarizations are supposed linear and parallel in order to maximize the SBS coupling, this computation needs to solve a system of three coupled differential equations: one for each wave amplitude, and one for the material coordinated density Q [12].

 

Fig. 9 Diagram of the waves circulating in the cavity.

Download Full Size | PPT Slide | PDF

|Erz+ncErt=iK2ElQElz+ncElt=iK2ErQ2Qt2+ΓQt+ΩB2Q=2ΩBK1ErEl

With the boundary conditions

|El(t,z0)=rrEr(t2L2c,z0)Er(t,zi)=E0(t,zi)+rlEl(t2L1c,zi)
where E0(t,zi) is the amplitude of the injected wave in the cavity.

In the former equations, n stands for the refraction index of the sample, Γ (s−1) and ΩB (s−1) being respectively the Brillouin linewidth and the Brillouin frequency. The constants K1, K2 are related to SBS gain g by:

4K1K2Γ=g2n377(MKS)

4.2 Code assessment

The simulations refer to the case of 5 cm long DKDP crystal (optical axis // z). Only the second to last trip in the cavity is considered: the amplification of the injected wave is not followed, we assume for the computation that its amplitude is equal to the amplitude of the ideal amplified wave (without modulation).

To mimic the gain saturation, a parabolic time decrease of this amplitude is assumed.

The following figures show the time variation of the intensity of the wave at the z = zi location. The strength of the Brillouin coupling is characterized by the contrast C defined by:

C=Max(Is(t)I0(t))1
I0 being the ideal intensity of the amplified wave. The parameters used for the simulations at the operating wavelength 1053 nm are equal to [9]:
|g=4.5cmGW1Γ=2π30106s1ΩB=2π13.78109s1
and,

|L1=5.635mL2=0.350mn=1.5

Now, we can check that the code fits the experimental behavior of the SBS in the cavity. First, when the frequency modulation matches the Brillouin frequency or with a submultiple of this frequency. The Fig. 10 shows a very good match with the previous experimental results shown in Fig. 5 and Fig. 6. The computed contrast for fm = 13.78 GHz and m = 1.1 radian, respectively for fm = 4.59 GHz and m = 1.8 radian, isC=46.5%, respectively C=22%.

 

Fig. 10 Simulation results from a modulated pulse phase. a): fm = 13.78 GHz and m = 1.1 rd. b): fm = 4.59 GHz and m = 1.8 rd.

Download Full Size | PPT Slide | PDF

Secondly, when the frequency modulation does not match the Brillouin frequency, for instance the smoothing technique frequency at 14.25 GHz can leave a detectable conversion FM-AM shown Fig. 11. Again, the code takes account of this effect with a fair reproduction(C=4.4%).

 

Fig. 11 Simulation of the FM-AM conversion with a 14.25 GHz modulation frequency at 1 radian modulation depth.

Download Full Size | PPT Slide | PDF

5. Choice of the modulation frequency for LMJ

The optical spectrum of E(t) is the Fourier transform of Eq. (1). It is given by:

E˜=E˜0(f)lJl(m)δ(flfm)
where Jl(m) is the first kind Bessel function and m the modulation depth. Approximately 2m + 1 peaks have non-negligible amplitudes.

As can be seen in Fig. 12, if, for instance, fm is equal to 2 GHz and m = 7 (LMJ case), different parts of the spectrum are separated by the Brillouin frequency shift of fB = ΩB / 2π = 13.78 GHz and hence stimulated Brillouin scattering in the regenerative amplifier may occur and thus unwanted FM-AM conversion. Shifting fm to 2.12 GHz allows avoiding Brillouin in the regenerative amplifier as 13.78 GHz is exactly between two multiples of 2.12 GHz (13.78 GHz = 6.5 x 2.12 GHz).

 

Fig. 12 Spectrum of an LMJ 3 ns-pulse without modulation (top), of an LMJ pulse with a phase modulation with fm = 2 GHz and m = 7 (middle) and of an LMJ pulse with a phase modulation with fm = 2.12 GHz and m = 7 (bottom).

Download Full Size | PPT Slide | PDF

However, LMJ phase modulation is not just a single phase modulation. As mentioned in section 3, a second sinusoidal phase modulation at 14.25 GHz is added for smoothing the focal spot. A change of the smoothing modulation frequency to 7 x 2.12 = 14.84 GHz would avoid SBS in the preamplifier. However, this change would have needed to change all smoothing devices. It can be shown that shifting the anti-Brillouin frequency from 2 to 1.9 GHz while keeping the smoothing frequency at 14.25 GHz is a good trade-off between simplicity and SBS suppression in the regenerative preamplifier.

6. Conclusion

In order to mitigate transverse SBS in the final optics of high power, high energy lasers and to smooth the focal spots, phase modulation is applied to the pulse in the front end. However, because of this phase modulation, SBS may also arise in the front-end and induce nonlinear FM-AM conversion. When a long pulse is overlapped with itself in a counterpropagating laser cavity, part of its spectrum may act as a Brillouin seed for its counter-propagating component. We have investigated experimentally and numerically this unexpected SBS respectively in the NIF and LMJ regenerative amplifiers. Numerical simulations are in very good agreement with experimental evidence. Even though the FM-AM conversion coming from this non-linear effect seems to be weak, we have shown that a careful choice of the phase modulation frequencies can avoid this effect and improve the performance of the front-end system. For LMJ we have thus decided to shift the anti-Brillouin frequency from 2.0 GHz to 1.9 GHz while keeping the smoothing frequency to 14.25 GHz. The NIF original laser specification of 3.0 GHz was found to be satisfactory but awareness of this potentially deleterious effect was raised. An additional improvement would have even been possible for LMJ by shifting the anti-Brillouin frequency to 2.12 GHz. However, a change of the smoothing frequency to 14.84 GHz would have also been required demanding a modification to all smoothing modulation devices.

Funding

Commissariat à l’énergie atomique et aux énergies alternatives (CEA); this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344; Lawrence Livermore National Security, LLC. LLNL-JRNL-761422.

References

1. M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016). [CrossRef]  

2. M. Nicolaizeau and P. Vivini, “LMJ status: second bundle commissioning and assessment of first years of service,” Proc. SPIE 10084, 10084 (2017). [CrossRef]  

3. J. R. Murray, J. Ray Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6(12), 2402–2411 (1989). [CrossRef]  

4. J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14(7), 1664–1671 (1997). [CrossRef]  

5. J. Garnier, L. Videau, C. Gouedard, and A. Migus, “Statistical analysis for beam smoothing and some applications,” J. Opt. Soc. Am. A 14(8), 1928–1937 (1997). [CrossRef]  

6. J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, (23 July 1999). [CrossRef]  

7. S. Vidal, J. Luce, S. Hocquet, C. Gouédard, P. Calvet, and D. Penninckx, “Distortion cancellation of frequency converted pulses with simple linear signal processing and application to frequency modulation to amplitude modulation conversion in high power lasers,” Appl. Opt. 51(24), 5818–5825 (2012). [CrossRef]   [PubMed]  

8. V. Bagnoud, J. Luce, L. Videau, and C. Rouyer, “Diode-pumped regenerative amplifier delivering 100-mJ single-mode laser pulses,” Opt. Lett. 26(6), 337–339 (2001). [CrossRef]   [PubMed]  

9. G. W. Faris, L. E. Jusinski, and A. P. Hickman, “High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals,” J. Opt. Soc. Am. B 10(4), 587–599 (1993). [CrossRef]  

10. X. Steve Yao, “Phase-to-Amplitude Modulation Conversion Using Brillouin Selective Sideband Amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998). [CrossRef]  

11. J.-F. Gleyze, V. Moreau, J. Dubertrand and J. Luce, “Recent advances for temporal and spectral diagnostics of the LMJ front-end laser facility,” Proc. SPIE 8962, High Energy/Average Power Lasers and Intense Beam Applications VII, 89620K (2014).

12. R. W. Boyd, “Non Linear Optics,” Academic Press, (2003).

References

  • View by:
  • |
  • |
  • |

  1. M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
    [Crossref]
  2. M. Nicolaizeau and P. Vivini, “LMJ status: second bundle commissioning and assessment of first years of service,” Proc. SPIE 10084, 10084 (2017).
    [Crossref]
  3. J. R. Murray, J. Ray Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6(12), 2402–2411 (1989).
    [Crossref]
  4. J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14(7), 1664–1671 (1997).
    [Crossref]
  5. J. Garnier, L. Videau, C. Gouedard, and A. Migus, “Statistical analysis for beam smoothing and some applications,” J. Opt. Soc. Am. A 14(8), 1928–1937 (1997).
    [Crossref]
  6. J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, (23 July 1999).
    [Crossref]
  7. S. Vidal, J. Luce, S. Hocquet, C. Gouédard, P. Calvet, and D. Penninckx, “Distortion cancellation of frequency converted pulses with simple linear signal processing and application to frequency modulation to amplitude modulation conversion in high power lasers,” Appl. Opt. 51(24), 5818–5825 (2012).
    [Crossref] [PubMed]
  8. V. Bagnoud, J. Luce, L. Videau, and C. Rouyer, “Diode-pumped regenerative amplifier delivering 100-mJ single-mode laser pulses,” Opt. Lett. 26(6), 337–339 (2001).
    [Crossref] [PubMed]
  9. G. W. Faris, L. E. Jusinski, and A. P. Hickman, “High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals,” J. Opt. Soc. Am. B 10(4), 587–599 (1993).
    [Crossref]
  10. X. Steve Yao, “Phase-to-Amplitude Modulation Conversion Using Brillouin Selective Sideband Amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
    [Crossref]
  11. J.-F. Gleyze, V. Moreau, J. Dubertrand and J. Luce, “Recent advances for temporal and spectral diagnostics of the LMJ front-end laser facility,” Proc. SPIE 8962, High Energy/Average Power Lasers and Intense Beam Applications VII, 89620K (2014).
  12. R. W. Boyd, “Non Linear Optics,” Academic Press, (2003).

2017 (1)

M. Nicolaizeau and P. Vivini, “LMJ status: second bundle commissioning and assessment of first years of service,” Proc. SPIE 10084, 10084 (2017).
[Crossref]

2016 (1)

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

2012 (1)

2001 (1)

1998 (1)

X. Steve Yao, “Phase-to-Amplitude Modulation Conversion Using Brillouin Selective Sideband Amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
[Crossref]

1997 (2)

1993 (1)

1989 (1)

Adams, J. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Arnold, P. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Bagnoud, V.

Baisden, P. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Bliss, E. S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Bonanno, R. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Bowers, M. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Calvet, P.

Cohen, S. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Di Nicola, J. M.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Dixit, S. N.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Ehrlich, R. B.

Erbert, G. V.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Erlandson, A. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Fair, J. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Faris, G. W.

Feigenbaum, E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Finucane, R. G.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Garnier, J.

Gouedard, C.

Gouédard, C.

Gourdin, W. H.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Hawley, R. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Heebner, J. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Hickman, A. P.

Hocquet, S.

Honig, J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

House, R. K.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Jancaitis, K. S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Jusinski, L. E.

Kalantar, D. H.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Kyrazis, D. T.

LaFortune, K. N.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Larson, D. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Le Galloudec, B. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Lindl, J. D.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Luce, J.

MacGowan, B. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Manes, K. R.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Marshall, C. D.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

McCandless, K. P.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

McCracken, R. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Menapace, J. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Migus, A.

Miller, P. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Montesanti, R. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Moses, E. I.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Murray, J. R.

Newton, M. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Nicolaizeau, M.

M. Nicolaizeau and P. Vivini, “LMJ status: second bundle commissioning and assessment of first years of service,” Proc. SPIE 10084, 10084 (2017).
[Crossref]

Nostrand, M. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Parham, T. G.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Penninckx, D.

Pryatel, J. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Rardin, D. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Ray Smith, J.

Roberts, V. S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Rodriguez, S. B.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Rothenberg, J. E.

Rouyer, C.

Rowe, A. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Sacks, R. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Salmon, J. T.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Shaw, M. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Sommer, S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Spaeth, M. L.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Spec, D. R.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Steve Yao, X.

X. Steve Yao, “Phase-to-Amplitude Modulation Conversion Using Brillouin Selective Sideband Amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
[Crossref]

Stolz, C. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Suratwala, T. I.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Thompson, C. E.

Tietbohl, G. L.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Trenholme, J. B.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Vidal, S.

Videau, L.

Vivini, P.

M. Nicolaizeau and P. Vivini, “LMJ status: second bundle commissioning and assessment of first years of service,” Proc. SPIE 10084, 10084 (2017).
[Crossref]

Wegner, P. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Weiland, T. L.

Whitman, P. K.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Widmayer, C. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Wilcox, R. B.

Zacharias, R.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Appl. Opt. (1)

Fus. Sci. Technol. (1)

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF Laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Steve Yao, “Phase-to-Amplitude Modulation Conversion Using Brillouin Selective Sideband Amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Lett. (1)

Proc. SPIE (1)

M. Nicolaizeau and P. Vivini, “LMJ status: second bundle commissioning and assessment of first years of service,” Proc. SPIE 10084, 10084 (2017).
[Crossref]

Other (3)

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, (23 July 1999).
[Crossref]

J.-F. Gleyze, V. Moreau, J. Dubertrand and J. Luce, “Recent advances for temporal and spectral diagnostics of the LMJ front-end laser facility,” Proc. SPIE 8962, High Energy/Average Power Lasers and Intense Beam Applications VII, 89620K (2014).

R. W. Boyd, “Non Linear Optics,” Academic Press, (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) First observation of large and tapered AM (with modulation frequencies of 3.24 and 17 GHz) overlaid with low AM, off-resonance situation (3 GHz and 17 GHz modulation frequencies). (b) AM modulation (%) measured when sweeping the modulation frequency of a single tone. (c) Resulting optical spectrum at SBS resonance near 13.77 GHz with the Stokes shifted line clearly visible and about 18% of AM in the time-domain. Note the artifact present on all measurements around −2 GHz. (d) similar plot off-resonance, for 13.9 GHz and about 3% AM in plot (b).
Fig. 2
Fig. 2 Pre-Amplifier Module (PAM) set-up. M: mirror, P.C.: Pockels cell, λ/4: quarter wave plate, P: polarizer.
Fig. 3
Fig. 3 State of polarization in the LMJ regenerative amplifier. Top: forward wave. Bottom: backward wave. The state of polarization can be split up in 2 perpendicular vectors where ΔΦ represents their phase shift. (a) During the amplification SBS area is underlined in the DKDP, in the LHG8 glass rod the polarizations are perpendicular. (b) At the last round trip, the glass rod still experiences perpendicular polarization but in the DKDP the SBS area moves to the middle of the Pockels cell.
Fig. 4
Fig. 4 Experimental configuration for FM-AM conversion measurement. As opposed to the LMJ configuration, first voltage step on the Pockels cell is applied closer to the rear mirror polarization in order to maximize the SBS effect. (a) During the amplification the SBS area is larger in the DKDP compared to SBS area in Fig. 3(a). (b) At the last round trip, in the DKDP the SBS area still move to the middle of the Pockels cell.
Fig. 5
Fig. 5 a: Regenerative output temporal profile with a 20 ns injected pulse at 13.78 GHz frequency modulation and 1.1 radian modulation depth. b: Optical spectral profile of the output pulse in blue. The green curve represents the normalized input spectral profile.
Fig. 6
Fig. 6 a: Output temporal profile with a fm = 4.59 GHz and m = 1.8 rad modulated pulse. b: Spectral profile (green input spectrum).
Fig. 7
Fig. 7 FM-AM conversion versus the phase modulation frequency scan of the seed pulse. Detection of Brillouin effect in the Pockels cell window and in the polarizer.
Fig. 8
Fig. 8 Temporal profile under a 14.25 GHz – 1 radian injection modulation.
Fig. 9
Fig. 9 Diagram of the waves circulating in the cavity.
Fig. 10
Fig. 10 Simulation results from a modulated pulse phase. a): fm = 13.78 GHz and m = 1.1 rd. b): fm = 4.59 GHz and m = 1.8 rd.
Fig. 11
Fig. 11 Simulation of the FM-AM conversion with a 14.25 GHz modulation frequency at 1 radian modulation depth.
Fig. 12
Fig. 12 Spectrum of an LMJ 3 ns-pulse without modulation (top), of an LMJ pulse with a phase modulation with fm = 2 GHz and m = 7 (middle) and of an LMJ pulse with a phase modulation with fm = 2.12 GHz and m = 7 (bottom).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E( t )= Π [ 20ns ] ( t ) e i m sin( 2π f m t )
| E r z + n c E r t =i K 2 E l Q E l z + n c E l t =i K 2 E r Q 2 Q t 2 +Γ Q t + Ω B 2 Q=2 Ω B K 1 E r E l
| E l ( t, z 0 )= r r E r ( t 2 L 2 c , z 0 ) E r ( t, z i )= E 0 ( t, z i )+ r l E l ( t 2 L 1 c , z i )
4 K 1 K 2 Γ =g 2n 377 (MKS)
C=Max( I s ( t ) I 0 ( t ) )1
| g=4.5 cmG W 1 Γ=2π30 10 6 s 1 Ω B =2π13.78 10 9 s 1
| L 1 =5.635 m L 2 =0.350 m n=1.5
E ˜ = E ˜ 0 ( f ) l J l ( m ) δ( fl f m )

Metrics