Abstract

The interest in pulsed fiber laser technology surrounds lots of critical optoelectronic applications ranging from optical communications, remote sensing to industrial material processing. Here, a femtosecond Er-doped fiber laser at 1560 nm have been demonstrated by using bulk-structured transition metal dichalcogenides (TMDs) – PtSe2 as the pulse modulator. The PtSe2 modulator was fabricated by using mechanically exfoliated methods from its single crystal and the exfoliated PtSe2 was directly transferred to the polished surface of the D-shaped fiber. Due to the strong interaction between PtSe2 and evanescent field, a self-starting Q-switched operation can be obtained. Furthermore, the mode-locking operation can be achieved easily by controlling the intra-cavity polarization states. Stable mode-locked operation can be maintained with pulse duration of 861 fs and signal to noise ratio (SNR) of 61.1 dB. These experimental results can validate the excellent nonlinear optical performance of PtSe2, and may make inroads for the ultrafast applications of the bulk and low-dimensional TMDs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Transition metal dichalcogenides (TMDs) have attracted substantial interest because of their unique physical and chemical properties, especially the applications in optoelectronics, energy, valley electronics, and so on [1–3]. The newly discovered group 10 TMDs layered materials such as platinum diselenide (PtSe2) and platinum disulfide (PtS2) have recently attracted great attention [4]. As a member of TMDs, PtSe2 has obtained a lot of attention due to its peculiar band gap which is layer-dependent. For example, Wang et al. found the monolayer and bilayer PtSe2 with an indirect band gap of 1.2 eV and 0.20 eV. When the layers are greater than 2 layers, the PtSe2 will transit from semiconductor-to-semimetal [5,6]. Yu et al. also found the bandgap of PtSe2 can be tunable in mid-infrared wavelength range by layer and defect engineering [7]. At the same time, different high-performance device based on 2D (two-dimensional) PtSe2 have been implanted, such as mid-infrared photodetector [7], wide spectral response photodiode [8], highly sensitive electromechanical piezoresistive pressure sensors [9], and gas sensor [10]. During the last ten years, the low-dimensional materials typified by graphene [11–16], topological insulator [17–23], TMDs [24–27], black phosphorus [28–30], carbon nanotubes (CNTs) [31–33] and MXene [34,35] have been successfully applied to the demonstration of ultrashort pulse laser generation. The emergence of these low-dimensional materials makes the realization of pulsed lasers easier. However, there are still some problems that need to be solved. Due to the linear energy dispersion relation of graphene, the absorption coefficient of single layer graphene is only 2.3%, which will lead to low modulation depth as an ultrafast pulse modulator. For optical modulator with CNTs, their performance is related to its diameter, chirality and length, and thus may lead to the extra non-saturable losses. For TMDs like MoS2, WS2, MoSe2 and WSe2, the band gap corresponds to the resonant absorption at visible light [36], and their modulation effect of the pulse modulator was explained mainly due to the atomic defects and the intermediate states in the band gap, which will make the modulation effect unstable. For black phosphorus, the toughest problem is that black phosphorus is oxidized easily in the air. Recently, there have some research works reported 2D PtSe2 can be as a saturable absorber (SA) used in 1 μm and 1.5 μm laser to generate ultrafast pulse. With the layer-dependent band gap of PtSe2, relatively large modulation depth, high carrier mobility [37–40] and ambient stable of PtSe2 [41], it has potential application in nonlinear optics and ultrafast photonics, which will make up for the shortcomings of these materials. However, for the pulsed laser based on 2D materials will have some common problems, such as the complicated preparation procedures. Compared to 2D materials, bulk-structured materials can be obtained very easily such as crashing the material and/or directly mechanically exfoliated methods from its single crystal. Using these bulk-structured materials, high performance pulse lasers have been demonstrated as well [42–44]. The bulk-structured PtSe2 is a semimetal which also have potential modulation effect for the near and mid-infrared wavelength.

Here, we use the mechanically exfoliated bulk-structured PtSe2 directly transferred to the D-shaped fibers polished surface. Due to the strong interaction between the light and matter, a self-starting Q-switched Er-doped fiber laser with wavelength of 1562.5 nm can be demonstrated. Through controlling polarization state of the intra-cavity, an ultrafast Er-doped mode-locked fiber laser with output pulse duration of 861 fs and the SNR of 61.1 dB can be demonstrated. Last but not least, this ultrafast mode-locked Er-doped fiber lasers also exhibit excellent long-term stability.

2. Fabrication and characterization of bulk-structured PtSe2 SA

The PtSe2 single crystal was bought from HQ Graphene. By repeatedly mechanically exfoliated of the single crystal PtSe2 by tape and transferring the PtSe2 material to the polished surface of the D-shaped fiber. This method is very easy and efficient to fabricate the bulk-structured PtSe2 SA decorated onto the D-shaped waveguide. In order to illustrate whether the mechanically exfoliated material was bulk-structured PtSe2, we also transferred the mechanically exfoliated PtSe2 material to the Si substrate for characterization. Figure 1(a) has shown the Raman spectra of PtSe2. As we can see in Fig. 1(a), the peaks at 175 and 205 cm−1 are assigned to Eg and A1g modes, respectively. The peak centered at ∼176 cm−1 is attributed to the Eg in-plane vibration mode of Se atoms moving away from each other within the layer, and the peak centered at ∼210 cm−1 corresponds to the A1g out of plane vibration mode of Se atoms in opposite directions. In addition, a LO peak is effectively absent for this samples and this can be found in few-layer PtSe2, which indicates the PtSe2 is bulk materials [8]. In order to illustrate the specific ratio of Pt/Se, we also used EDS to ensure this mechanically exfoliated material is PtSe2, as shown in Fig. 1(b). The ratio of Pt/Se is ~0.57 (~1:2), indicating this material is PtSe2. It is worth mentioning that Fig. 1(a) and 1(b) have shown the Si signal, which can result from the Si substrate. Figure 1(c) is the SEM of PtSe2, we can see that the mechanically exfoliated bulk-structured PtSe2 is relatively smooth. The inset of Fig. 1(c) has shown the AFM image of PtSe2. The thickness of PtSe2 is about 70 nm, which indicated it is bulk-like material. Figure 1(d) has shown the linear absorption spectrum of PtSe2 from 1000 to 2000 nm, and the absorption spectrum is relatively flat, which is consistent with the result in [38]. The inset of the Fig. 1(d) has shown the nonlinear absorption curve result of PtSe2 using the dual-detector measurements (Centre wavelength: 1560 nm; Pulse width: 130 ps; Repetition rate: 20.8 MHz). According to the experimental results, the modulation depth is 6.9% and the saturation optical intensity is 9.48 MW/cm2 by fitting the experiment data.

 

Fig. 1 (a) Raman spectra of mechanically exfoliated PtSe2 using 532 nm laser. (b) EDS of the PtSe2 and the corresponding atomic ratio of Pt/Se. (c) SEM of PtSe2, the inset shows the AFM image. (d) Linear absorption spectrum of PtSe2 from 1000 nm - 2000 nm. The inset has shown the nonlinear optical transmission of PtSe2 at 1550 nm obtained from dual-detector measurements.

Download Full Size | PPT Slide | PDF

3. Results and discussion

The bulk-structured PtSe2 decorated D-shaped fiber as the SA for the mode-locked Er-doped fiber laser is schematically depicted in Fig. 2. The fiber laser operating in the anomalous dispersion regime has a ring cavity with a total length of 24.5 m, comprising a piece of 0.9 m erbium-doped fiber (EDF, LIEKKI Er 80-8/125) with a group velocity dispersion (GVD) parameter of 15.8 ps/nm/km and 23.6 m standard single mode fiber (SMF-28) with a GVD parameter of 18 ps/nm/km at 1550 nm. The pump source is a 975 nm laser diode, by using a 980/1550 wavelength-division multiplexer (WDM) couple pump light into laser cavity. The laser power output from the fiber coupler with 10% output couple. In order to ensure the unidirectional operation of the ring cavity, a polarization independent isolator (PI-ISO) is inserted. The evolution of polarization state in intra-cavity was controlled by polarization controller (PC). The output spectrum was monitored with a spectrometer and the output pulse was monitored by a real-time oscilloscope with a bandwidth of 4 GHz. A power meter was used to monitor the output power.

 

Fig. 2 Experimental setup of Q-switched and mode-locked Er-doped fiber laser using bulk-structured PtSe2 decorated D-shaped fiber as the saturable absorber.

Download Full Size | PPT Slide | PDF

Before the exfoliated bulk-structured PtSe2 was transferred to D-shaped fiber polished surface, we ensured this ring cavity has no self Q-switching or self-mode-locking by rotating the PC and adjusting the power. After the mechanically exfoliated PtSe2 was transferred to the D-shaped fiber polished surface, self-starting Q-switched pulse can be observed when the incident pump power increased to 150 mW. Figure 3 has shown the self-starting passive Q-switching output characteristics. Figure 3(a) shows the passively Q-switching output pulse train at the maximum pump power and Fig. 3(b) shows the shortest passive Q-switching single pulse with pulse duration of 5.9 μs. The Q-switched wavelength located at 1562.5 nm can be seen from Fig. 3(c). The radio frequency (RF) spectrum with the SNR of 41.1 dB have shown in Fig. 3(d), which indicated the self-starting passively Q-switching Er-doped fiber laser operated in a relatively stable state. The relationship between the pulse duration and repetition rate as the function of pump power is shown in Fig. 3(e). We can see that the pulse duration gradually decreased and the pulse repetition rate increased with the pump power increased. Figure 3(f) shows the maximum Q-switched output power and pulse energy is 1.09 mW and 78.52 nJ, respectively.

 

Fig. 3 The output parameters of self-starting passively Q-switched Er-doped fiber laser using the bulk-structured PtSe2 decorated D-shaped fiber as the saturable absorber.

Download Full Size | PPT Slide | PDF

We further demonstrated the ultrafast mode-locked Er-doped fiber laser modulated by the PtSe2 SA. By carefully adjusting the polarization state in the cavity by using PC, the mode-locked Er-doped fiber laser could be achieved. The mode-locking threshold is about 70 mW, and the stable mode-locked operation can be observed when pump power reaches up to 80 mW. The corresponding mode-locking output parameters have been shown in Fig. 4. Figure 4(a) depicts the oscilloscope traces of the pulse train. The output pulse repetition rate is 8.24 MHz, which matches well with the cavity length, indicating that the laser operates in the mode-locked state. Figure 4(b) has shown the mode-locking spectrum with central wavelength of 1567.07 nm and 3 dB bandwidth of 3.1, the output spectral has obvious Kelly spectral sidebands, indicating that the fiber laser is operating in the soliton regime. Correspondingly, as shown in Fig. 4(c), the measured autocorrelation (AC) trace can be well fitted by the hyperbolic secant function with a full width at half maximum (FWHM) of 1.33 ps, indicating that the real pulse width is about 861 fs. The time-bandwidth product is 0.326, showing that the obtained soliton pulse is almost transform limited. This pulse width is shorter than the 2D PtSe2 as the SA applied in Er-doped fiber laser at 1550 nm [33], which indicate bulk-structured PtSe2 have the same or even better performance. The mode-locking RF spectrum have measured and the result can be seen from Fig. 4(d). We can see the signal-to-noise ratio is reach up to 61.1 dB, which suggests that the fiber laser operates in a highly stable regime. To investigate the long-term stability of this single soliton operation, we recorded the output spectra over 1 hour when the pump power was 80 mW, and the experimental results have been shown in Fig. 4(e). Neither the central wavelength drift nor new wavelength component was observed during the measurement, showing the excellent repeatability and long-term stability of the fiber laser. In order to illustrate the advantages of bulk PtSe2-based SA, we have compared the laser performance modulated by bulk and few-layered PtSe2 at 1550 nm and 1064 nm. The experimental results have shown in Table 1, from which we could see that the bulk PtSe2-based SA can deliver the pulse with the shortest pulse width compare to few-layered PtSe2.

 

Fig. 4 Ultrafast Er-doped mode-locked fiber laser using the bulk-structured PtSe2 decorated D-shaped fiber as the SA: (a) Mode-locked pulse train. (b) Mode-locking output spectrum. (c) Single pulse with pulse duration 861 fs. (d) RF spectrum of mode-locked fiber laser. (e) Mode-locked output spectral records at intervals of 10 minutes.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Performance comparison of bulk and few-layered PtSe2-based saturable absorbers at 1550 nm and 1064 nm.

4. Conclusion

By using mechanically exfoliated bulk-structured PtSe2 directly transferred to the D-shaped fiber, self-starting passively Q-switched and ultrafast mode-locked fiber laser could be demonstrated. With the nonlinear modulation from the PtSe2, the femtosecond laser with pulse duration 861 fs and the SNR up to 61.1 dB can be delivered. At the same time, the mode-locked fiber laser operation can maintain excellent long-term stability. The experimental results indicated that the semimetal bulk-structured PtSe2 can serve as an excellent SA to modulate the fiber laser system to deliver femtosecond laser. Moreover, it can be anticipated that the PtSe2 will be a broadband SA extending to mid-infrared spectral range due to the band gap tunable performance of PtSe2.

Funding

National Natural Science Fund Foundation of China (NSFC) (61475102, 11574079, 61775056); Natural Science Foundation of Hunan Province (2017JJ1013).

References

1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012). [CrossRef]   [PubMed]  

2. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014). [CrossRef]  

3. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013). [CrossRef]   [PubMed]  

4. Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016). [CrossRef]   [PubMed]  

5. Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015). [CrossRef]   [PubMed]  

6. Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016). [CrossRef]   [PubMed]  

7. X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018). [CrossRef]   [PubMed]  

8. C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018). [CrossRef]   [PubMed]  

9. C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016). [CrossRef]   [PubMed]  

10. S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018). [CrossRef]   [PubMed]  

11. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]  

12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef]   [PubMed]  

13. B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017). [CrossRef]  

14. J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett. 37(11), 2166–2168 (2012). [CrossRef]   [PubMed]  

15. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011). [CrossRef]  

16. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012). [CrossRef]   [PubMed]  

17. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012). [CrossRef]  

18. B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017). [CrossRef]  

19. H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013). [CrossRef]  

20. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016). [CrossRef]   [PubMed]  

21. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014). [CrossRef]   [PubMed]  

22. P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016). [CrossRef]  

23. J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

24. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015). [CrossRef]   [PubMed]  

25. M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015). [CrossRef]  

26. R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015). [CrossRef]  

27. L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018). [CrossRef]  

28. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015). [CrossRef]   [PubMed]  

29. X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, and X. Tao, “Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber,” Opt. Lett. 41(9), 1945–1948 (2016). [CrossRef]   [PubMed]  

30. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015). [CrossRef]   [PubMed]  

31. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004). [CrossRef]  

32. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004). [CrossRef]   [PubMed]  

33. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007). [CrossRef]   [PubMed]  

34. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018). [CrossRef]   [PubMed]  

35. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017). [CrossRef]   [PubMed]  

36. W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013). [CrossRef]   [PubMed]  

37. M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

38. L. L. Tao, X. W. Huang, J. S. He, Y. J. Lou, L. H. Zeng, Y. H. Li, H. Long, J. B. Li, L. Zhang, and Y. H. Tsang, “Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser,” Photon. Res. 6(7), 750–755 (2018). [CrossRef]  

39. J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018). [CrossRef]   [PubMed]  

40. K. Zhang, M. Feng, Y. Y. Ren, F. Liu, X. S. Chen, J. Yang, X. Q. Yan, F. Song, and J. G. Tian, “Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber,” Photon. Res. 6(9), 893–899 (2018). [CrossRef]  

41. Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017). [CrossRef]   [PubMed]  

42. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator,” Opt. Express 23(5), 6359–6369 (2015). [CrossRef]   [PubMed]  

43. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorbe,” Opt. Express 24(10), 10575–10589 (2016). [CrossRef]   [PubMed]  

44. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-Infrared Saturable Absorption of Defective Bulk-Structured WTe2 for Femtosecond Laser Mode-Locking,” Adv. Mater. 26(41), 7454–7461 (2016).

References

  • View by:
  • |
  • |
  • |

  1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  2. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  3. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  4. Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
    [Crossref] [PubMed]
  5. Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
    [Crossref] [PubMed]
  6. Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016).
    [Crossref] [PubMed]
  7. X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
    [Crossref] [PubMed]
  8. C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
    [Crossref] [PubMed]
  9. C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
    [Crossref] [PubMed]
  10. S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
    [Crossref] [PubMed]
  11. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  13. B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
    [Crossref]
  14. J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett. 37(11), 2166–2168 (2012).
    [Crossref] [PubMed]
  15. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
    [Crossref]
  16. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
    [Crossref] [PubMed]
  17. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  18. B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
    [Crossref]
  19. H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
    [Crossref]
  20. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
    [Crossref] [PubMed]
  21. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014).
    [Crossref] [PubMed]
  22. P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
    [Crossref]
  23. J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).
  24. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
    [Crossref] [PubMed]
  25. M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
    [Crossref]
  26. R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
    [Crossref]
  27. L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
    [Crossref]
  28. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  29. X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, and X. Tao, “Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber,” Opt. Lett. 41(9), 1945–1948 (2016).
    [Crossref] [PubMed]
  30. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  31. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  32. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004).
    [Crossref] [PubMed]
  33. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
    [Crossref] [PubMed]
  34. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
    [Crossref] [PubMed]
  35. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
    [Crossref] [PubMed]
  36. W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
    [Crossref] [PubMed]
  37. M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).
  38. L. L. Tao, X. W. Huang, J. S. He, Y. J. Lou, L. H. Zeng, Y. H. Li, H. Long, J. B. Li, L. Zhang, and Y. H. Tsang, “Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser,” Photon. Res. 6(7), 750–755 (2018).
    [Crossref]
  39. J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
    [Crossref] [PubMed]
  40. K. Zhang, M. Feng, Y. Y. Ren, F. Liu, X. S. Chen, J. Yang, X. Q. Yan, F. Song, and J. G. Tian, “Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber,” Photon. Res. 6(9), 893–899 (2018).
    [Crossref]
  41. Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
    [Crossref] [PubMed]
  42. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator,” Opt. Express 23(5), 6359–6369 (2015).
    [Crossref] [PubMed]
  43. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorbe,” Opt. Express 24(10), 10575–10589 (2016).
    [Crossref] [PubMed]
  44. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-Infrared Saturable Absorption of Defective Bulk-Structured WTe2 for Femtosecond Laser Mode-Locking,” Adv. Mater. 26(41), 7454–7461 (2016).

2018 (8)

K. Zhang, M. Feng, Y. Y. Ren, F. Liu, X. S. Chen, J. Yang, X. Q. Yan, F. Song, and J. G. Tian, “Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber,” Photon. Res. 6(9), 893–899 (2018).
[Crossref]

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

L. L. Tao, X. W. Huang, J. S. He, Y. J. Lou, L. H. Zeng, Y. H. Li, H. Long, J. B. Li, L. Zhang, and Y. H. Tsang, “Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser,” Photon. Res. 6(7), 750–755 (2018).
[Crossref]

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

2017 (6)

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref] [PubMed]

2016 (8)

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorbe,” Opt. Express 24(10), 10575–10589 (2016).
[Crossref] [PubMed]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-Infrared Saturable Absorption of Defective Bulk-Structured WTe2 for Femtosecond Laser Mode-Locking,” Adv. Mater. 26(41), 7454–7461 (2016).

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, and X. Tao, “Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber,” Opt. Lett. 41(9), 1945–1948 (2016).
[Crossref] [PubMed]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016).
[Crossref] [PubMed]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

2015 (7)

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser based on a bulk-structured Bi2Te3 topological insulator,” Opt. Express 23(5), 6359–6369 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

2012 (4)

J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett. 37(11), 2166–2168 (2012).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

2011 (1)

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

2010 (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

2009 (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2007 (1)

2004 (2)

Abramski, K. M.

Anasori, B.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref] [PubMed]

Bao, Q.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Berner, N. C.

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Besenbacher, F.

Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016).
[Crossref] [PubMed]

Bhattacharya, S.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Cai, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Carvalho, A.

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Castro Neto, A. H.

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Chai, Y.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Chen, S.

Chen, X. S.

Chen, Y.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

Cheng, Z.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Chertopalov, S.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Cullen, C. P.

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Dong, M.

Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016).
[Crossref] [PubMed]

Dong, Y.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Du, L.

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

Du, S.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Duesberg, G. S.

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Eda, G.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Fan, D.

Fan, D. Y.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Feng, M.

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Fritzen, C. P.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Gao, H. J.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Gity, F.

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

Gogotsi, Y.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref] [PubMed]

Goh, C. S.

Guo, Z.

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Hasan, T.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

He, J.

He, J. S.

Heine, T.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

Howe, R. C. T.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Hu, G. H.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Hu, L.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Hu, Q.

Hu, Z.

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Huang, B.

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Huang, X. W.

Hurley, P. K.

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

Inoue, Y.

Iwasawa, H.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Jablonski, M.

Jeong, H.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Jhon, Y. I.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref] [PubMed]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-Infrared Saturable Absorption of Defective Bulk-Structured WTe2 for Femtosecond Laser Mode-Locking,” Adv. Mater. 26(41), 7454–7461 (2016).

Jhon, Y. M.

Ji, W.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Jia, Z.

Jiang, B.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Jiang, G.

Jiang, G. B.

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kassani, S. H.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Kataria, S.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

Kelleher, E. J. R.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Khazaeinezhad, R.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Kim, B. Y.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kloc, C.

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Koo, J.

Kotakoski, J.

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Kuc, A.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

Lau, S. P.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Lee, J.

Lee, J. H.

Lee, K.

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Lemme, M. C.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Li, C.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Li, J. B.

Li, L.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Li, L.-J.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, Q.

Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016).
[Crossref] [PubMed]

Li, S.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Li, Y. H.

Lin, G.-R.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

Lin, H.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Lin, J.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Lin, S.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Lin, Y.-C.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

Lin, Z.

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Liu, F.

Liu, J.

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Liu, Z.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Loh, K. P.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Long, H.

Lou, Y. J.

Lu, N.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Lu, S.

Luo, H. L.

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

Luo, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Maleski, K.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Mao, D.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Maruyama, S.

McEvoy, N.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Meyer, J. C.

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Miao, L. L.

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Mochalin, V. N.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Monaghan, S.

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

Mu, H.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Murakami, Y.

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

O’Brien, M.

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Oh, K.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Okunishi, E.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Pan, J.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Pantelides, S. T.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Park, J.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-Infrared Saturable Absorption of Defective Bulk-Structured WTe2 for Femtosecond Laser Mode-Locking,” Adv. Mater. 26(41), 7454–7461 (2016).

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorbe,” Opt. Express 24(10), 10575–10589 (2016).
[Crossref] [PubMed]

Park, K. J.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Peng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Pennycook, S. J.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Pindl, S.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

Podila, R.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Popov, S. V.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qian, L.

Qiao, J.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Qin, Z.

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rao, A. M.

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Ren, X.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Ren, Y. Y.

Riazimehr, S.

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Ribeiro, R. M.

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Schneider, D. S.

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

Schwier, E. F.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Seo, M.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref] [PubMed]

Set, S. Y.

Shao, Y.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Shen, D. Y.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shimada, K.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Singh, B.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Sobon, G.

Song, F.

Song, S.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Song, Y.-W.

Sotor, J.

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Su, X.

Suenaga, K.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Sun, B.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Sun, J. T.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Sun, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tanaka, Y.

Tang, D.

Tang, D. Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tang, P. H.

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Taniguchi, M.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Tao, L. L.

Tao, X.

Taylor, J. R.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Tian, J. G.

Toh, M.

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Torrisi, F.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tsang, Y. H.

Turitsyn, S. K.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

Wagner, S.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

Wang, B. L.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Wang, E.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Wang, F.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, J. Y.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, Q. J.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Wang, Q. K.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Wang, X.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Wang, Y.

X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, and X. Tao, “Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber,” Opt. Lett. 41(9), 1945–1948 (2016).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wang, Y. C.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Wang, Y. Q.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wen, S.

Wen, S. C.

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Weng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Woodward, R. I.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Wu, D.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Wu, M.

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

Wu, S.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xie, G.

Xu, B.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Xu, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Xu, K.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Xu, S.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Yaguchi, H.

Yamashita, S.

Yan, M.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Yan, X. Q.

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, H. T.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Yang, J.

Yang, K.

Yang, S.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Yao, W.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Yeom, D.

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

Yi, J.

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

Yim, C.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Yokaribas, V.

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

Yu, H. H.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Yu, P.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Yu, W.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Yu, X.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Yu, Z.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Yuan, J.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

Yuan, P.

Zeng, L. H.

Zeng, Q.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Zhang, B.

Zhang, G.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Zhang, H.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, H. J.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Zhang, K.

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

K. Zhang, M. Feng, Y. Y. Ren, F. Liu, X. S. Chen, J. Yang, X. Q. Yan, F. Song, and J. G. Tian, “Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber,” Photon. Res. 6(9), 893–899 (2018).
[Crossref]

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Zhang, L.

Zhang, M.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Zhang, W.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhang, Y. Y.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Zhao, C.

Zhao, C. J.

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Zhao, J.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhao, R.

Zhao, W.

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Zhou, S.

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

Zhou, W.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

Zhou, X.

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

Zhu, C.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Zou, Y.

Zou, Y. H.

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

2D Mater. (1)

M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, and S. Wu, “High quality atomically thin PtSe2 films grown by molecular beam epitaxy,” 2D Mater. 4(4), 045015 (2017).

ACS Appl. Mater. Interfaces (1)

J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao, “Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers,” ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018).
[Crossref] [PubMed]

ACS Nano (2)

C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg, “High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature,” ACS Nano 10(10), 9550–9558 (2016).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Mater. (6)

Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, and R. Podila, “Saturable Absorption in 2D Ti3 C2 MXene Thin Films for Passive Photonic Diodes,” Adv. Mater. 30(10), 1705714 (2018).
[Crossref] [PubMed]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.,” Adv. Mater. 28(12), 2399–2407 (2016).
[Crossref] [PubMed]

Z. Wang, Q. Li, F. Besenbacher, and M. Dong, “Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics,” Adv. Mater. 28(46), 10224–10229 (2016).
[Crossref] [PubMed]

Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai, “High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs,” Adv. Mater. 29(5), 1604230 (2017).
[Crossref] [PubMed]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-Infrared Saturable Absorption of Defective Bulk-Structured WTe2 for Femtosecond Laser Mode-Locking,” Adv. Mater. 26(41), 7454–7461 (2016).

Appl. Phys. Lett. (1)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Huang, J. Yi, L. Du, G. B. Jiang, L. L. Miao, P. H. Tang, J. Liu, Y. H. Zou, H. L. Luo, C. J. Zhao, and S. C. Wen, “Graphene Q-switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 0900407 (2017).
[Crossref]

J. Liu, M. Wu, B. Huang, P. H. Tang, C. J. Zhao, D. Y. Shen, D. Y. Fan, and S. K. Turitsyn, “Widely Wavelength-tunable Mid-infrared Fluoride Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2017).

IEEE Photonics Technol. Lett. (2)

R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Y. Kim, D. Yeom, and K. Oh, “Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nano-sheets,” IEEE Photonics Technol. Lett. 27(15), 1581–1584 (2015).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm Pulsed Er3+: ZBLAN Fiber Laser Modulated by Topological Insulator,” IEEE Photonics Technol. Lett. 28(14), 1573–1576 (2016).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photonics Rev. 7(6), L77–L83 (2013).
[Crossref]

Laser Phys. Lett. (1)

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8(12), 880–886 (2011).
[Crossref]

Nano Lett. (4)

S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C. P. Fritzen, T. Heine, G. S. Duesberg, and M. C. Lemme, “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films,” Nano Lett. 18(6), 3738–3745 (2018).
[Crossref] [PubMed]

C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, and G. S. Duesberg, “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes,” Nano Lett. 18(3), 1794–1800 (2018).
[Crossref] [PubMed]

Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y. Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H. T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H. J. Gao, “Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett. 15(6), 4013–4018 (2015).
[Crossref] [PubMed]

W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2.,” Nano Lett. 13(11), 5627–5634 (2013).
[Crossref] [PubMed]

Nano Res. (1)

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Nanoscale (1)

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref] [PubMed]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9(1), 1545 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. (1)

B. Huang, P. H. Tang, J. Yi, G. B. Jiang, J. Liu, Y. H. Zou, C. J. Zhao, and S. C. Wen, “Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm,” Opt. Mater. 71, 74–77 (2017).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (2)

Sci. Rep. (1)

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Raman spectra of mechanically exfoliated PtSe2 using 532 nm laser. (b) EDS of the PtSe2 and the corresponding atomic ratio of Pt/Se. (c) SEM of PtSe2, the inset shows the AFM image. (d) Linear absorption spectrum of PtSe2 from 1000 nm - 2000 nm. The inset has shown the nonlinear optical transmission of PtSe2 at 1550 nm obtained from dual-detector measurements.
Fig. 2
Fig. 2 Experimental setup of Q-switched and mode-locked Er-doped fiber laser using bulk-structured PtSe2 decorated D-shaped fiber as the saturable absorber.
Fig. 3
Fig. 3 The output parameters of self-starting passively Q-switched Er-doped fiber laser using the bulk-structured PtSe2 decorated D-shaped fiber as the saturable absorber.
Fig. 4
Fig. 4 Ultrafast Er-doped mode-locked fiber laser using the bulk-structured PtSe2 decorated D-shaped fiber as the SA: (a) Mode-locked pulse train. (b) Mode-locking output spectrum. (c) Single pulse with pulse duration 861 fs. (d) RF spectrum of mode-locked fiber laser. (e) Mode-locked output spectral records at intervals of 10 minutes.

Tables (1)

Tables Icon

Table 1 Performance comparison of bulk and few-layered PtSe2-based saturable absorbers at 1550 nm and 1064 nm.

Metrics