Abstract

Threshold carrier densities of GeSn quantum well (QW) lasers and the physical reason of low-temperature lasing of current GeSn laser are investigated through the comparison of threshold carrier densities of conventional III-V QW lasers. Electrons distributed over L-band is the main cause of decreased gain for GeSn QWs. To increase the gain (and improve the laser characteristics), a modulation-doped GeSn QW is proposed and the material gain is analyzed based on many-body theory for both qualitative and quantitative simulation. Significant gain increase can be expected for n-type modulation doping QWs. The doping condition for elevated temperature lasing is discussed and it was found that material gain curve similar to III-V QW is obtained for GeSn QW with n-type modulation doping of 6 × 1018 cm−3. It was also found that unlike III-V QW lasers, n-type modulation doping is more effective for high-speed operation in terms of differential gain than p-type modulation doping.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical devices using GeSn materials have been intensively studied recently since GeSn can be grown on Ge/Si substrate and becomes direct-gap material in mid-infrared (mid-IR) range by incorporating small amount of Sn into Ge [1]. So far, various active optical devices such as photo diodes, optical modulators, and lasers have been investigated [2–7]. Among them, the GeSn laser is the most important device since the monolithically integrable lasers on Si is a missing component in Si photonics. After the first report of GeSn laser [4], significant effort has been made to improve the performance of the GeSn laser [5–7]. Especially, increasing the operating temperature is critically important for integrated device application. So far, the improvement of the operating temperature has been mainly achieved by following methods. (1) By increasing Sn, GeSn becomes more direct-gap material and achieving population inversion becomes easier. Currently, the incorporation of Sn up to 17% [5,6] was realized. Using GeSn buffer layer helped to increase the composition of Sn. (2) Using doublehetero or quantum well (QW) structures [7] leads to stronger confinement of carriers. Especially, using QW is effective to reduce the density of states in the active region. (3) A microdisk structure can be used for strain engineering [5,7]. (4) Improved crystal quality with reduced misfit dislocation density [5–7]. Thanks to these efforts, the operation temperature is increased to 180 K [5,6] for the mid-IR wavelength range (2 to 3 μm). However, the value is still cryogenic and further improvement is highly desired.

In this paper, we theoretically discuss the operating temperature of GeSn QW laser through the comparison of threshold carrier density (Nth) of GeSn and conventional III-V lasers. Many-body theory (MBT) formulated for group IV material [8,9] is used for calculating material gain due to its strong predictability. It is shown that Nth of GeSn laser is three times larger than that of III-V laser for telecommunication [10] at room temperature due to large electron distribution in L-band. To reduce Nth of GeSn laser, modulation doping (MD) structure [11,12] is proposed as an alternative way for improving the operating temperature and the material gain of MD GeSn QW is analyzed. Significant gain increase can be expected for n-type MD and the technique is useful for increasing the operating temperature of GeSn laser. The doping condition for elevated temperature lasing is discussed and it was found that material gain curve similar to III-V QW is obtained for GeSn QW with n-type MD of 6 × 1018 cm−3. It was also found that unlike III-V QW lasers, n-type MD is more effective for high-speed operation in terms of differential gain than p-type MD.

2. Device structure and theory

We consider Fabry-Perot laser based on the ridge waveguide structure [13,14], whose cross section is shown in the left part of Fig. 1. It consists of upper and lower p- and n-claddings (Si0.14Ge0.7Sn0.16), 7QW region, and GeSn buffer layer on Si substrate. For QW, we consider Ge0.84Sn0.16/Si0.1Ge0.76Sn0.14 QWs on Ge0.88Sn0.12 buffer layer. SiGeSn is used to make the bandgap of the barrier region large. The composition is determined to maximize the bandgap of SiGeSn with the condition of no strain in the barrier [8]. The well and barrier thicknesses are 10 nm and the strain of the well is −0.55% (compressive strain). The barrier bandgap wavelength is 2.2 μm and the barrier layer is lattice matched to the buffer layer. The bandgap wavelength of QW (bandgap between first conduction and valence subbands) is 2.9 μm at 298 K. This is the optimized structure for increasing the material gain for Ge0.88Sn0.12 buffer presented in [8]. It should be noted that Ge0.88Sn0.12 buffer was experimentally realized in [6]. The doping concentrations of upper p- and lower n-cladding are assumed to be 5 × 1018 and 1 × 1018 cm−3. The free carrier absorption (FCA) loss coefficients for these doping densities are αf,p = 28 and αf,n = 15 cm−1 [15]. The quasi-TE mode field distribution calculated by finite-element method [16] is shown in the right part of Fig. 1. The waveguide width, the layer thicknesses are denoted in the left part of Fig. 1. The calculated confinement factors of the TE mode in the well, p-cladding, and n-cladding are Γwell = 0.06, Γp = 0.27, and Γn = 0.41. We assume that the facets are cleaved and the total mirror loss is αm = 20 cm−1 for the cavity length of 500 μm. Nth of the laser can be calculated by

 Γwellgth(Nth)=Γwellαf,well+Γnαf,n+Γpαf,p+αm
where gth is the threshold gain. αf,well is FCA loss coefficient in the well and depends on the injected carrier and MD densities. αf,well is calculated by Drude model [13] and given by
 αf,well=e3λ24π2c3ε0nr[nΓμΓ2+nLμL2+pμp2]
were e is the electron charge, λ is the wavelength, c is the speed of light in vacuum, ε0 is the free-space permittivity, and nr is the refractive index of the material. nΓ and nL are the electron densities in Γ- and L-band. p is the hole density in the valence band. μΓ and μL are the mobilities of electrons in Γ- and L-band. μp is the hole mobility. These mobilities are the function of injected and doping densities.

 

Fig. 1 Schematic cross section of the waveguide (left) and fundamental quasi-TE mode field distribution (right).

Download Full Size | PPT Slide | PDF

For calculating material gain, we use MBT [8,9]. The microscopic polarization pkt is calculated by solving Semiconductor Bloch equation given by

 dpkdt=iωkpkiΩk(fc+fv1)+pkt|col
fc and fv are the Fermi distributions for electrons and holes. The definitions of other terms can be found in [8]. By solving (3), the microscopic polarization is calculated and a macroscopic polarization, P, is obtained by summing the microscopic polarization over all the states. The macroscopic polarization is related to material gain through Maxwell’s equations as
g(ω) =Im[Pε0nr2E0]=Im[Pε0nr2E0Vkμk*pk]
where V is the volume, μkt is the dipole matrix element, and E0 is the electric field of light. Since MBT can exclude artificial fitting parameters used in conventional approach, one can grasp inherent optical properties of QW both qualitatively and quantitatively. In [9] and [10], it was shown that calculated optical properties of QW are in good agreement with the measured ones for group IV and III-V materials.

3. Material gain and threshold characteristics

3.1 GeSn/SiGeSn QWs without MD

Solid lines in Fig. 2 show the calculated peak material gain of GeSn QW as a function of injected carrier density for different temperature without MD. Dashed line shows the material gain of 1.3-μm InAlGaAs QW at 298 K presented in [10]. An open circle on the dashed line shows Nth of this laser and is 1.58 × 1018 cm−3 (gth = 350 cm−1) [10]. These values are used for representative ones of direct-gap III-V QW lasers. Of course, this is not perfectly fair comparison (since the laser using this InAlGaAs QW can lase at even 368 K [17], it is severe for GeSn QWs for room temperature comparison), we use these values to grasp inherent reason of cryogenic lasing of current GeSn laser. The red line in Fig. 2 shows the gain curve of GeSn QW laser at 298 K. The transparent density is significantly increased and the curve is shifted toward large density side. If we assume gth of GeSn QW is similar (the assumption is valid as shown later), Nth of GeSn QW laser is about 4 × 1018 cm−3 at 298 K and almost 3 times larger than that of III-V QW laser. The increased Nth originates from the existence of L-band. Figure 3 shows the conduction Γ- and L-band structures of GeSn QW. Two band structures are plotted in the same graph for comparison. The effective mass of L-bandedge for [110] direction is very large, leading to the large density of states. Since the injected carriers are filled from lower energy side, the majority of injected electrons is distributed in L-band. For this QW (which is optimized to maximize the gain for Ge0.88Sn0.12 buffer), the ratio of injected carrier density distributed in Γ-band is only 10% (In this optimized QW [8], the energies of lowest subbands of Γ- and L-band are almost the same). The increased carrier results in increased non-radiative recombination and generating heat in the active region. Especially, the effect is significant for Auger recombination since it is proportional to N3. Increased temperature in the active region reduces the material gain and increases the carrier loss, leading to non-lasing. For low temperature, the carrier density for obtaining the same material gain is reduced. Green and blue lines in Fig. 2 show the gain curves of GeSn QW for 200 and 150 K. For lower temperature, the gain curve shifted toward small density side because it is easy to achieve population inversion (fc + fv-1 term in Eq. (3) becomes positive with reduced density). At 150 K, the gain curve of GeSn QW is very similar to that of III-V laser for the region of material gain < 1500 cm−1. It means that similar material gain required for the lasing in III-V QW laser can be obtained for GeSn QW with similar carrier density. It is very interesting that this temperature is comparable to the maximum operating temperature of current GeSn laser (~180 K). From these results, for achieving high-temperature operation, Nth should be reduced for GeSn laser.

 

Fig. 2 Peak material gain as a function of injected carrier density of GeSn QW for different temperatures. The dashed line shows peak material gain of III-V QW presented in [10].

Download Full Size | PPT Slide | PDF

 

Fig. 3 Conduction band structures of GeSn QW without MD.

Download Full Size | PPT Slide | PDF

3.2 GeSn/SiGeSn QWs with MD

To reduce Nth, we consider MD QW. MD QW is composed of highly doped barriers and nondoped well layers. For example, for n-type doping, electrons are supplied to the well layers from ionized donor impurities in barriers. For p-type doping, holes are supplied to the well layers from barriers. By using MD, achieving the population inversion in QW becomes easier because carriers in the well is increased for the same injection level, leading to increased material gain. The effect of MD on the laser performance was experimentally confirmed in [12]. Here, we consider n- or p-type MD QW. The MD density is NMD. For calculating the material gain of MD QW, the quasi-Fermi levels for conduction and valence bands are calculated by following equations. For the n-type doping, they are given by

N=NMD+Ninj=NMD+NΓ+NL=ktπLwfc(EΓ)dkt+84π2Lwfc(EL)dk1dk2
P=Pinj=ktπLwfv(EΓ)dkt
where N and P are total electron and hole densities in the well. Ninj and Pinj are the injected carrier densities. NΓ and NL are the electron densities in Γ and L conduction band. The summation extends over the subbands of QWs. Lw is the well thickness and kt, k1, and k2 denote the transverse wavenumbers. fc and fv are Fermi-Dirac distribution functions for electrons and holes. EΓ and EL are the band structures of the QW for Γ and L bands calculated by kp theory [18]. For the n-type doping, the quasi-Fermi level of the conduction band is affected. For the p-type doping, the quasi-Fermi levels for conduction and valence bands are calculated by following equations.
N=Ninj=NΓ+NL=ktπLwfc(EΓ)dkt+84π2Lwfc(EL)dk1dk2
P=NMD+Pinj=ktπLwfv(EΓ)dkt
For simplicity, we do not consider a band bending due to the doping. Figure 4 shows the calculated peak material gain of n-type MD GeSn QW as a function of injected carrier density for different NMD at 298 K. Dashed line is for III-V QW [same as Fig. 2]. By increasing NMD, the material gain is increased significantly, and for high MD density, the carrier density for obtaining the same material gain is reduced. This is because due to n-type MD, L-band is somewhat filled with electrons without injection and the population inversion occurs with reduced carrier density. For NMD = 6 × 1018 cm−3, the gain curve of GeSn QW is similar to that of III-V QW. Figure 5 shows the calculated peak material gain of p-type MD GeSn QW as a function of injected carrier density for different NMD at 298 K. As in the n-type doping, the gain is increased for p-type doping, however, the increase is smaller for the same doping density than that of n-type doping. In conventional direct-gap QW laser, the effective mass of the valence band is large compared with that of the conduction band. Therefore, p-type MD is more useful to achieve the population inversion. However, for group IV material considered here, the effective mass of the L-band is large and the carriers distributed in the L-band cannot be used for light emission. Therefore, n-type doping is more useful for GeSn QW.

 

Fig. 4 Peak material gain as a function of injected carrier density of n-type GeSn MD QW for different doping densities at room temperature. The dashed line shows peak material gain of III-V QW presented in [10].

Download Full Size | PPT Slide | PDF

 

Fig. 5 Peak material gain as a function of injected carrier density of p-type GeSn MD QW for different doping densities at room temperature. The dashed line shows peak material gain of III-V QW presented in [10].

Download Full Size | PPT Slide | PDF

Figure 6 shows Nth as a function of NMD. The horizontal dashed line shows the Nth of III-V QW laser [10]. Nth is decreased with NMD. The reduction is larger for n-type MD as expected by the gain curves shown in Figs. 4 and 5. For n-type MD, at NMD = 7 × 1018 cm−3, the value of Nth is similar to that of III-V QW laser. Figure 7 shows the differential gain at the threshold density as a function of NMD. While the differential gain for n-type MD is increased with NMD, it is almost constant for p-type MD. Although for III-V QW, it is known that p-type MD is useful for high-speed operation [11,12], the tendency is opposite for GeSn QW. Therefore, for GeSn QW, n-type MD is useful for both reducing Nth and increasing the differential gain. Large differential gain is useful for a high-speed operation [17].

 

Fig. 6 Threshold carrier densities as a function of doping density of n- and p-type GeSn MD QWs.

Download Full Size | PPT Slide | PDF

 

Fig. 7 Threshold differential gain as a function of doping density of n- and p-type GeSn MD QWs.

Download Full Size | PPT Slide | PDF

Although we used FCA loss calculated by Drude model for estimating the threshold, the value may be increased due to various reasons (fabrication imperfection, degraded crystal quality, etc). Also, there are a lot of uncertainties in this material system in terms of loss, such as waveguide sidewall loss, etc. To investigate the effect of increased loss for MD QW, we intentionally increased the FCA loss and calculate the threshold. Blue line in Fig. 8 shows gth as a function of NMD for n-type MD QW. All the results in Fig. 8 are for 298K. gth is increased for large NMD because MD increases FCA loss of the active region. The value is several hundreds of cm−1 and comparable to III-V laser. Red line in Fig. 8 shows Nth as a function of NMD calculated by Eq. (1) [same as Fig. 6]. Green, orange, and purple lines show Nth for intentionally increased loss (1.5, 2, and 3 times larger than gth). Up to 2gth, Nth comparable to III-V laser can be obtained for NMD < 1019 cm−3. For 3gth, although it seems to be difficult to achieve Nth comparable to III-V laser, the threshold reduction is possible by using MD QW. Reduced Nth leads to reduced nonradiative recombination and high-temperature operation is expected.

 

Fig. 8 Threshold carrier densities and gain as a function of doping density of n-type GeSn MD QWs.

Download Full Size | PPT Slide | PDF

4. Conclusion

Material gain of MD GeSn QW is investigated by MBT. Through the comparison of threshold carrier density with conventional direct-gap III-V QW laser, the reason for preventing GeSn laser from high-temperature lasing is discussed. By using n-type MD QW, the threshold carrier density can be reduced to the level of III-V QW laser. Although the fabrication of MD QW may be challenging task at this stage, this is a promising technique for increasing the operating temperature of GeSn laser.

References

1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]  

2. G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

3. M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018). [CrossRef]  

4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015). [CrossRef]  

5. V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017). [CrossRef]  

6. J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018). [CrossRef]  

7. N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018). [CrossRef]   [PubMed]  

8. T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015). [CrossRef]  

9. T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015). [CrossRef]  

10. W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014). [CrossRef]  

11. K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990). [CrossRef]  

12. K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990). [CrossRef]  

13. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009). [CrossRef]   [PubMed]  

14. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010). [CrossRef]  

15. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015). [CrossRef]  

16. T. Fujisawa and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express 11(13), 1481–1489 (2003). [CrossRef]   [PubMed]  

17. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012). [CrossRef]  

18. T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  2. G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).
  3. M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
    [Crossref]
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  5. V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
    [Crossref]
  6. J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
    [Crossref]
  7. N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
    [Crossref] [PubMed]
  8. T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
    [Crossref]
  9. T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
    [Crossref]
  10. W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
    [Crossref]
  11. K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
    [Crossref]
  12. K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
    [Crossref]
  13. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
    [Crossref] [PubMed]
  14. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
    [Crossref]
  15. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
    [Crossref]
  16. T. Fujisawa and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express 11(13), 1481–1489 (2003).
    [Crossref] [PubMed]
  17. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
    [Crossref]
  18. T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
    [Crossref]

2018 (3)

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

2017 (1)

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

2015 (4)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

2014 (2)

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
[Crossref]

2012 (1)

2010 (2)

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2009 (2)

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

2003 (1)

1990 (2)

K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
[Crossref]

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Akie, M.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

Al-Kabi, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Arai, M.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

Aubin, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Baets, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Bertrand, M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Buca, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Calvo, V.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Campenhout, J. V.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Capellini, G.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Cerutti, L.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Chang, G.-E.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

Chang, S.-W.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

Chelnokov, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Chen, X.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Chinone, N.

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chuang, S. L.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

Dave, U. D. U.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Denneulin, T.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Dou, W.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Du, W.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fujisawa, T.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

T. Fujisawa and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express 11(13), 1481–1489 (2003).
[Crossref] [PubMed]

Gassenq, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gencarelli, F.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Ghetmiri, S. A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Grant, P.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Green, W. M. J. W.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Grützmacher, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Guilloy, K.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Hartmann, J. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hartmann, J.-M.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Hattasan, N.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Healy, N.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Hens, Z.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Hu, C.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Ikonic, Z.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Ito, T.

Kakitsuka, T.

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Kanazawa, S.

Kano, F.

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Kobayashi, W.

Kondo, Y.

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Koshiba, M.

Kuyken, B.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Leo, F.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Li, B.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Liu, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Liu, X.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Loo, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Malik, A.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Mantl, S.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Margetis, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Mashanovich, G.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Mashanovich, G. Z.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

Milord, L.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Mishima, T.

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Mitsuhara, M.

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Mortazavi, M.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Mosleh, A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Muneeb, M.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Ohiso, Y.

Osgood, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Pauc, N.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Peacock, C. A. C.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Pham, T.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Pilon, F. A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Povstugar, I.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Rainko, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Reboud, V.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Rodriguez, J.-B.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Roelkens, G.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Rothman, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Rouchon, D.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Ryckeboer, E.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Saitoh, K.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

Sanchez, D.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Sanjoh, H.

Sato, T.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Schröder, T.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Shen, L.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Shimura, Y.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Sigg, H.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Stange, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Sun, G.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Tadokoro, T.

Thai, Q. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Tolle, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Tournie, E.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Tournié, E.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Tsuzuki, K.

Uomi, K.

K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
[Crossref]

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Uvin, S.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Vincent, B.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

von den Driesch, N.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wang, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Yu, S.-Q.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Zabel, T.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Zaumseil, P.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Zhou, Y.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

ACS Photonics (1)

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Adv. Sci. (Weinh.) (1)

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

IEEE J. Quantum Electron. (4)

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

IEEE Photonics J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (2)

K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
[Crossref]

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Nat. Photonics (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic cross section of the waveguide (left) and fundamental quasi-TE mode field distribution (right).
Fig. 2
Fig. 2 Peak material gain as a function of injected carrier density of GeSn QW for different temperatures. The dashed line shows peak material gain of III-V QW presented in [10].
Fig. 3
Fig. 3 Conduction band structures of GeSn QW without MD.
Fig. 4
Fig. 4 Peak material gain as a function of injected carrier density of n-type GeSn MD QW for different doping densities at room temperature. The dashed line shows peak material gain of III-V QW presented in [10].
Fig. 5
Fig. 5 Peak material gain as a function of injected carrier density of p-type GeSn MD QW for different doping densities at room temperature. The dashed line shows peak material gain of III-V QW presented in [10].
Fig. 6
Fig. 6 Threshold carrier densities as a function of doping density of n- and p-type GeSn MD QWs.
Fig. 7
Fig. 7 Threshold differential gain as a function of doping density of n- and p-type GeSn MD QWs.
Fig. 8
Fig. 8 Threshold carrier densities and gain as a function of doping density of n-type GeSn MD QWs.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

  Γ well g th ( N th )= Γ well α f,well + Γ n α f,n + Γ p α f,p + α m
  α f,well = e 3 λ 2 4 π 2 c 3 ε 0 n r [ n Γ μ Γ 2 + n L μ L 2 + p μ p 2 ]
  d p k dt =i ω k p k i Ω k ( f c + f v 1 )+ p k t | col
g( ω ) =Im[ P ε 0 n r 2 E 0 ]=Im[ P ε 0 n r 2 E 0 V k μ k * p k ]
N= N MD + N inj = N MD + N Γ + N L = k t π L w f c ( E Γ )d k t + 8 4 π 2 L w f c ( E L )d k 1 d k 2
P= P inj = k t π L w f v ( E Γ )d k t
N= N inj = N Γ + N L = k t π L w f c ( E Γ )d k t + 8 4 π 2 L w f c ( E L )d k 1 d k 2
P= N MD + P inj = k t π L w f v ( E Γ )d k t

Metrics