Abstract

Ultrafast dynamic of thin surface plasma layer plays a crucial role in the formation of periodic surface ripples after laser pulse irradiation. Using the pump-probe imaging technique, a complete scenario of the periodic ripples formation on a GaP surface is demonstrated after being irradiated by single femtosecond laser pulse. The ripples firstly emerge at delay time of several tens of picoseconds, and disappear completely at several hundreds of picoseconds, resulting in a transient overheating solid state ablation crater. It’s interesting that new ripples appear and gradually become deep and clear after hundreds of picoseconds. A part of these ripples remain after the ablation crater is solidified. The period of the remained ripples is measured and approximately equal to the periods of the two transient ripples. The thin surface plasma model with multi-layer is introduced to study the formation of periodic ripples. The dynamics of the carrier excitation, carrier and lattice temperature, transient dielectric constant, and other factors are obtained by the two-temperature model and the Drude model. The results show that the periods of electric field distributions at different depths of the plasma layer are the same. The formation of the two transient ripples and the remained ripples are all related to the periodic energy deposition due to the SPP excitation at the air-plasma interface.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Laser-induced periodic surface structures (LIPSS) are a common phenomenon observed in most solid materials [117]. Due to its potential and flexibility, femtosecond LIPSS has become a universal technique for fabricating functional structures, such as colored structure, super-hydrophobicity surface, surface-enhanced Raman spectroscopy, and optical data storage [1821].

The formation mechanism of LIPSS is an interesting topic. The surface scattered wave model demonstrates that the formation of ripples can be attributed to the interference of the incident laser and the surface-scattered light [2224]. However, the surface-plasmon-polariton (SPP) model attributes the ripples formation to a spatially modulated light field due to the SPP excitation [15,25,26]. Many other models have also been developed to explain ripples formation, such as Sipe’s theory [27] and Coulomb explosion [28].

When a femtosecond laser pulse irradiates a semiconductor material, massive free carriers (> 1021 cm−3) are excited on the sample surface through single-photon or multi-photon absorption, the optical properties of semiconductor material become metallic-like [14,17]. The thin plasma layer plays a key role in the formation of periodic ripples [9]. The upper and lower surfaces of the thin plasma layer reflect incident laser, supporting the surface plasmonic wave. The interference of the laser and scattering light or SPP induces periodic energy deposition resulting in the formation of periodic ripples. The strong absorption of the thin plasma surface layer changes its effective dielectric permittivity instantaneously, which significantly affects the periodic ripples according to the scattering and the SPP models [9]. However, experimental study of the ultrafast dynamic of the thin surface plasma layer is lacking.

Ultrafast imaging of low spatial frequency LIPSS (LSFL) formation is necessary for further understanding the formation mechanism [2934]. Garcia-Lechuga et al spatio-temporally resolved the birth and growth of ripples on Si surface by using a moving-spot irradiation method [29]. The results showed that the formation of ripples was initiated from free carrier generation. Then non-thermal melting and liquid phase overheating occurred, and the surface was rapidly solidified into an amorphous phase. We have researched the dynamic of LSFL formation by using the pump-probe imaging technique. The evolution of surface ripples was observed beside a prefabricated nanogroove on a Si surface. The results demonstrate that the periodic energy deposition due to SPP excitation causes the formation of LSFL [1].

This paper demonstrates the ultrafast dynamics of a thin surface plasma layer and the formation of periodic ripples on a GaP crystal after a single femtosecond pulse irradiation by using the pump-probe imaging technique. The band gap of GaP crystal is 2.78 eV, larger than the photon energy of 800 nm light. Electrons are excited from valence band to conduction band through two photon absorption, which is different from Si and Au [1,34]. The processes of a thin surface plasma layer formation, ablated material ejection, and the periodic ripples formation were clearly observed. The ripples emerged only once in Si and Au, no matter if reserved after the ablated surface had solidified [1,34]. However, the periodic ripples on a GaP surface were observed twice during the formation processes. The first transient periodic ripples completely disappeared after 0.3–3 ns, depending on the laser fluence, after the ejection of ablated materials finished. Hereafter, the ripples reappeared at the ablation crater and grew slowly, and reserved well after the ablated surface had completely solidified. The period of the final ripples at the bottom of the crater was approximately equal to the periods of all the transient ripples that appeared during the formation process.

A thin surface plasma layer model is introduced to clarify the same-period phenomena of LSFL. The spatio-temporal evolution of the dielectric constant is predicted by using the two-temperature model combined with the Drude model (TTM-DM). The electric field distributions at the interfaces of the air-plasma and plasma-substrate are assessed by using COMSOL software. The simulation results show that the period of the electric intensity distribution at 40 nm below the surface is equal to that at the air-plasma interface. The surface plasma layer model fully explains the same-period phenomena and further confirms that the formation of the transient and final LSFL is related to the periodic energy deposition due to SPP excitation.

2. Experiment setup and sample characterization

2.1 Experimental setup

Figure 1(a) shows the experimental setup of ultrafast pump-probe imaging, which is similar to that shown in [1,33,34]. The laser system outputs 800 nm and 50 fs laser pulses with a repetition rate of 1 kHz. The laser beam is divided into two beams by a splitter. One laser beam is the pump beam to induce periodic ripples. Another laser beam is focused into a 10 mm thick water cell to produce a white-light pulse that used as the probe pulse. The optical spectrum of the white-light pulse is in the range of 450–570 nm. The probe pulse goes through a delay line to produce different delay times compared with the pump pulse. The pump and probe pulses are focused together on a GaP surface by an objective lens (100×, NA = 0.9). A CCD camera is used to capture an optical micrograph (OM) image of the ablation crater.

 

Fig. 1. (a) The experiment setup. DL: delay line, BS: beam splitter. (b) The concave lens increases the focus radius from 2.6 µm to 28 µm. (c) Blue triangle line: the emission intensity on a ZnSe crystal along the white arrow in (b). Red rectangular line: the calculated laser intensity according to the emission intensity. (d) The spectra of the white-light pulse before (blue solid curve) and after the short-pass filter (black dotted curve) [1].

Download Full Size | PPT Slide | PDF

The pump laser is diverged by a f = –150 mm lens placed in front of the objective lens. The intensity distribution of the laser field at the sample plane is obtained by measuring the emission light from a ZnSe crystal surface with the CCD camera. Figure 1(b) shows that the pump laser becomes a flat-roofed light at the sample surface, and its diameter in half width at half-maximum (HWHM) increases to 28 µm with several rings due to the diffraction effect of the objective lens. The intensity changes mainly in the range of 0.7–1.0 along the radial direction from 0 µm to 11.5 µm, as shown in Fig. 1(c). The blue emission from the ZnSe crystal is excited by two-photon absorption of 800 nm light. The intensity of the pump laser field changes in the range of 0.84–1.0 and the average value is approximately 0.87 [1].

The laser pulse energy Ep is measured by an energy sensor and the laser fluence F is calculated by F = Ep/S, in which S is the area of the pump laser at the sample surface. The intensity of the white light pulse is too weak to disturb the measurement of the LSFL.

The durations of the pump and probe pulses are very important parameters. We have estimated that the duration of probe pulse extends to 0.6 ps as it arrives at the sample surface [1]. The pump pulse passes mainly through the objective lens and the concave lens. The objective lens mainly contains a battery of silica lenses, and the effective length is about 20 mm. The thickness of the concave lens is about 3 mm. The refractive index of fused silica is 1.4542 for 750 nm, and 1.4525 for 850 nm light. The duration of the pump pulse extends from 50 fs to 180 fs as it arrives at the sample surface. The zero-point Δt = 0 of the pump-probe delay is determined by analyzing the reflectivity change of Si surface after intense laser irradiation [1].

2.2 Sample characterization

The sample is an undoped 2 mm thick GaP crystal. The surface was optically polished with the roughness less than 1 nm. The nanogroove served as the SPP source is fabricated by laser direct writing with 800 nm, 1 kHz, 50 fs laser focused by a water immersion lens (100 ×, NA = 1.2). The focus diameter is estimated to be 400 nm by using dfoc = 0.61λ/NA, here λ is laser wavelength in air. Uniform nanogroove of 400 nm wide is fabricated with a laser fluence F = 1.8 J/cm2 and a scanning velocity of 60 µm/s [10]. Figure 2(a) shows an image of the nanogroove measured with an atomic force microscope (AFM). Figure 2(b) shows the depth change in the range of 110 nm to 125 nm, and the average depth is 115 nm. The surface is very flat at both sides of the nanogroove. AFM and OM images indicate that the fabrication of nanogroove doesn’t have obvious influences on the morphology and crystalline phase of the GaP crystal. The GaP crystal is moved by a two-axis translation stage. Every pump pulse irradiates at a fresh nanogroove. The ablation craters are measured by AFM (Nanonavi E-Sweep).

 

Fig. 2. (a) AFM image of the femtosecond laser fabricated nanogroove on the GaP crystal. (b) Cross-profiles of the nanogroove at different positions marked in (a).

Download Full Size | PPT Slide | PDF

3. Experimental results and discussion

3.1 Ultrafast dynamics of the thin surface plasma layer and the formation of LSFL irradiated by a fs laser pulse with a fluence of 2.5 J/cm2

When the femtosecond laser irradiates a GaP crystal, valence band electrons are excited to conduction band through two-photon absorption. The free electrons further absorb laser energy and thermalize to form a surface plasma layer. The electrons in the plasma layer heat the lattice through electron-phonon coupling, causing the lattice to melt, ablate, cool, and finally solidify.

Figures 3(a)–3(r) show OM images of the GaP surface at different delay times after irradiation by a single pump pulse with laser fluence of 2.5 J/cm2. The ablation threshold of GaP plane surface was 1.3 J/cm2 measured by observing the ablation pot with optical microscopy [14]. The laser fluences in this paper are in the range of 1.5–2.5 J/cm2, larger than the ablation threshold. The plasma emission might be produced by the pump pulse with fluence of 2.5 J/cm2. In order to distinguish the OM images illuminated by the plasma emission or by the probe pulse, a contrast experiment is conducted. The sample surface is captured without the probe pulse after single pump pulse irradiation, the picture is black and nothing can be seen, which indicates that the OM images is illuminated by the probe pulse. There are mainly two reasons. First, a short-pass filter is put in front of the CCD, and only the light with wavelength of less than 550 nm can reach the CCD. Second, the gain of the CCD is low, and the surface is only captured clearly when the illumination light is very intense.

 

Fig. 3. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 2.5 J/cm2.

Download Full Size | PPT Slide | PDF

The ultrafast dynamic can be divided into four processes as follows.

(1) Excitation and heating of the surface plasma layer (0–2 ps)

At a delay time of 0 ps, only a prefabricated nanogroove can be seen as shown in Fig. 3(a). The surface has no change. At 2 ps, the surface brightens significantly as shown in Fig. 3(b), and the reflectivity increases by 10% [1]. This is because the direct band gap of the GaP crystal is approximately 2.78 eV, and the valence band electrons are excited through two-photon absorption [14]. The free electrons also absorb laser energy through inverse bremsstrahlung, then the electrons thermalize and collision ionization occurs. The electron density in the conduction band is usually higher than 1021 cm−3. The material changes from semiconductor to metallic behavior, and a thin surface plasma layer is formed. Therefore, the reflectivity of the surface increases.

(2) Hot electron ejection and air ionization (4–10 ps)

At a delay time of 4 to 10 ps, the surface starts to blur slightly, and the reflectivity decreases by approximately 6% in Fig. 3(c) compared with Fig. 3(b). At this stage, high energy free electrons begin to fly out from the material surface and ionize the air. The absorption of ionized air increases, resulting in a slight decrease in reflectivity [35].

(3) The ablated material ejection and ripple formation and disappearance (15–400 ps)

At 15 ps, very shallow annular rings are observed on the surface, which are caused by the diffraction of a concave lens as shown in Fig. 3(d). From 20 to 40 ps, the annular rings become increasingly obvious. At the same time, the whole spot turns darker. This is the first time that the ablated material begins to eject, and the ejection becomes more intense as time passes. The ejection material absorbs light strongly, darkening the crater [36]. LSFL are formed on the sample at 80 ps as shown in Fig. 3(h), more periodic ripples are formed at 100–155 ps, and the ripples become significantly darker and more regular. The ripples are perpendicular to the direction of the laser polarization, and the period is approximately 720 nm.

At 200 ps, the ripples begin to disappear, and are very faint in the low half part of the crater as shown in Fig. 3(j). At 300 ps, only short, shallow ripples remain in the ablation crater as demonstrated in Fig. 3(k). At 400 ps, the ripples completely disappear, and the circular rings disappear as shown in Fig. 3(l). In order to clearly observe the bottom of the transient ablated crater, the brightness of the part in the rectangle of Fig. 3(l) is enhanced, which is rough and has some irregular remnants of diffraction rings as shown in Fig. 3(m). The result shows that the material at the bottom of the crater is in a transient solid state. This means that the molten surface plasma layer has ejected completely.

(4) Slow ablation of the overheated solids below the surface plasma layer and the second ripples formation (500 ps- solidification)

This study demonstrates that the ionized high energy electrons fly out from the surface, resulting in a static positive charge on the surface and triggering the Coulomb explosion [37,38]. Electron-lattice coupling causes the lattice to heat and melt. Then liquid phase explosion occurs because the high temperature and high-pressure surface plasma layer will eject from the sample [39]. The whole process lasts approximately 400 ps. During the material ejection, the periodic ripples are appearing, becoming clear, and disappearing. According to the SPP model, the periodic distribution of the electric field and energy deposition induced by the excitation of SPP on the surface lead to the appearance of periodic ripples.

At 500 ps and 6000 ps, the ejected plasma dissipates, the absorption decreases and the crater begins to brighten. At 500 ps, new short periodic ripples begin to appear on the rest of the diffraction ring. After 500 ps, the ablation crater continues to melt and slow ablation. At 1000 ps, periodic ripples also begin to form at the bottom of the ablation crater near both sides of the pre-fabricated groove. As the delay time increases, the ripples become longer and deeper. At 5500 ps, the ripples near the pre-fabricated groove are clear and regular. In the process of surface solidification, due to the thermos-hydrodynamic effect and surface tension, the periodic ripples far from the pre-fabricated nanogroove become shallow and disappear. The period of the new ripples is approximately 714 nm, which is nearly the same as the first transient ripples. At 5500 ps, the brightness of the ablation crater as shown in Fig. 3(q) is 6% higher than that after surface solidification as demonstrated in Fig. 3(r). This indicates that after the plasma layer ejection, the ablation crater is a transient overheated material whose temperature exceeds the melting temperature.

Figure 4 shows the respective intensity profiles along the white arrows in Fig. 3. The intensity profiles are normalized and the curves at 80 ps, 100 ps, 400 ps, 500 ps, 1000 ps, 2.5 ns, and 5.5 ns shift upward for convenient comparison. The intensity variation demonstrates the ripples emerge and grow at different delay times. The period remains basically unchanged during plasma formation, ablation, and surface solidification, and the positions are almost the same. The ultrafast dynamics of the surface plasma layer and the ripples formation process indicate that the periodic distribution of the light field induced by SPP excitation resulting in the periodic deposition of laser energy is the main factor for the formation of periodic ripples.

 

Fig. 4. The intensity profiles along the arrows in Fig. 3.

Download Full Size | PPT Slide | PDF

Surface plasma intensively absorbs laser energy. As the plasma layer depth increases, the effective light intensity decreases rapidly. Therefore, the effective dielectric constant changes at different depths. According to the interference theory of scattered light and incident light, the dielectric constant changes at different depths, leading to the difference in the refractive index, so the ripple period should be variable [2]. However, the experimental results are significantly different from the predicted results according to scattered light theory. The SPP model considers that the periodic distribution of the light field caused by the excitation of the SPP is determined by the effective dielectric constant of the air-plasma interface. Although the effective dielectric constant changes at different plasma layer depths, the light intensity distribution period is the same and is determined by the SPP wavelength. This is consistent with the experimental results. Two kinds of SPPs can be excited at the interfaces of the air-plasma and plasma-substrate, respectively [9]. The predicted periodic ripples caused by SPP at the plasma substrate are not observed in our experiment. Therefore, the subwavelength periodic ripples are determined by the SPP at the air-plasma interface [17].

Figure 5(a) shows the AFM image of the ablation carter after irradiation by a single pump pulse at a laser fluence of 2.5 J/cm2. Figure 5(b) shows the height profile along the line I in Fig. 5(a) and the depth of the ablation crater is approximately 50 nm. The inset shows the height profile of the periodic ripples in the rectangle in Fig. 5(b). The relative height of the periodic ripples is approximately 18 nm. We propose that the thickness of the surface plasma layer is equal to the depth of the ablation crater minus the relative height of the periodic ripples. The thickness of the overheating layer below the surface plasma layer is approximately equal to the height of the periodic ripples.

 

Fig. 5. (a) AFM image of the ablation crater by a single laser pulse at a laser fluence F = 2.5 J/cm2. (b) The height profile along the line I in (a). The inset is the part of the rectangle in (b).

Download Full Size | PPT Slide | PDF

Based on the aforementioned results, we assess the mechanism of the laser excited surface plasma layer and periodic ripple formation as shown in Fig. 6. When the femtosecond laser irradiates the GaP crystal, electrons are excited to conduction band through two-photon absorption. The free electrons further absorb laser energy and form a thin surface plasma layer. Meanwhile, an overheating layer forms between the surface plasma layer and the GaP substrate. The SPPs are excited at the air-plasma interface beside the pre-fabricated nanogroove as shown in Fig. 6. The periodic deposition of the laser energy is caused by the SPPs, and the period is determined by the SPP wavelength on the air-plasma interface. The depth of the periodic energy deposition is distributed throughout the plasma layer and reaches the overheating layer. After the material ejection, the ripples are formed at the overheating layer.

 

Fig. 6. Laser-induced thin plasma layer supporting the SPPs at the interface of the air plasma resulting in the formation of LSFL by periodic energy deposition.

Download Full Size | PPT Slide | PDF

Femtosecond laser-induced phase transition from crystalline to amorphous in silicon and the amorphous/crystalline periodic ripples have been studied intensely in recent years [6,29,4042]. This kind of laser-induced periodic structures did not involve significant material removal, leading to homogeneous amorphous/crystalline periodic ripples. The relative reflectivity increased by 10% to 20%, depending on the thickness of amorphous layer [6,29]. Femtosecond-resolved imaging of the formation process of amorphous/crystalline periodic ripples in silicon demonstrated that the formation process was initiated from dense plasma generation leading to nonthermal melting, liquid phase overheating, and rapid solidification into the amorphous phase [29]. The transient reflectivity as functions of delay time, free carrier density, thickness of liquid layer was studied in detail in theory and experiments [29]. The relative reflectivity increased by more than 40% in a delay time of 0–1 ps irradiated by a single laser pulse, which was caused by dense plasma (ne=1–4×1022 cm−3) and nonthermal melting [43]. The metallic liquid phase last for several nanoseconds. Therefore, the results in this paper accord well with these reports [6,29,4043]. Namely, the increased reflectivity is caused by surface plasma (metallic liquid) layer in a delay time of 0–1 ns.

3.2 Ultrafast dynamics of the thin surface plasma layer and the LSFL formation irradiated by a fs laser pulse with different fluences

The evolution of laser-induced ripples at a fluence of 2.1 J/cm2 is also researched by a single pump pulse. Figure 7 shows the time-resolved OM images of LSFL. This process is similar to that of the laser fluence at 2.5 J/cm2. At a delay time of 60 ps, LSFL can be observed clearly beside the nanogroove in Fig. 7(b). The LSFL becomes clearer and brighter at 100 ps as shown in Fig. 7(c). Afterward, the strong ablation begins to happen at 150 ps as shown in Fig. 7(d). This is because a large amount of ablative material is ejected and the so-called phase explosion occurs when the sample surface is heated to extreme temperature above the critical temperature [39,44]. At 300 ps, the LSFL disappears as shown in Fig. 7(e). After the material ejection, the LSFL is erased at the bottom of the transient ablation crater at 450 ps as demonstrated in Fig. 7(f). The LSFL reappear at 700 ps as shown in Fig. 7(g) and becomes more regular and clearer at 3ns. The final preserved LSFL are very clear, and uniform as demonstrated in Fig. 7(i). Figure 8 shows the intensity profiles along the white arrows in Figs. 7(b)–7(i), respectively. The intensity profiles are normalized and the curves at 100 ps, 150 ps, 300 ps, 450 ps, 700 ps, 3ns, and +∞ are shifted upward.

 

Fig. 7. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 2.1 J/cm2.

Download Full Size | PPT Slide | PDF

 

Fig. 8. The intensity profiles along the arrows in Fig. 7.

Download Full Size | PPT Slide | PDF

Figure 9 shows the time-resolved OM images of the LSFL at different delay times with laser fluence of 1.7 J/cm2. There is no change at the delay time of 0 ps as shown in Fig. 9(a). At 60 ps, some rings and faint ripples are visualized beside the nanogroove. At 100 ps, the LSFL becomes clearer and black rings appear. The LSFL is most clear at 250 ps as demonstrated in Fig. 9(d). At 700 ps, the ripples are left only on the rings. The ripples and rings both completely disappear as shown in Fig. 9(f). However, at 6 ns, the blurry LSFL reappears. Due to the limitation of the delay line, the later imaging can’t be obtained. But we can find the LSFL are preserved in the ablation region finally as shown in Fig. 9(h). Figure 10 shows the respective intensity profiles along the white arrows in Figs. 9(b)–9(h).

 

Fig. 9. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 1.7 J/cm2.

Download Full Size | PPT Slide | PDF

 

Fig. 10. The intensity profiles along the arrows in Fig. 9.

Download Full Size | PPT Slide | PDF

The dynamics of the LSFL formations with other laser fluences are also researched. The evolution of the LSFL formation changing with the laser fluence is shown in Fig. 11. For a low laser fluence of 1.5 J/cm2, very fuzzy ripples first appear at a delay time of approximately 100 ps. Very regular ripples then form on the sample surface at a delay time of approximately 250 ps. Then the ripples become less regular because the ablation becomes serious and the transient ripples disappear at approximately 700 ps. The reappearance time of the ripples is default because the delay time is beyond the range of 6 ns. As the fluence increases to 1.7 J/cm2, the ripples emerge at 60 ps. The ripples appear earlier as the laser fluence increases, and it is the same for the best ripples, the ripple disappearance, and the ripple reappearance. The reason is the electron and lattice temperatures rise more rapidly and higher at a larger laser fluence, causing these phenomena to happen earlier [39].

 

Fig. 11. Delay times when the ripples first appearance, best, disappearance, and second appearance.

Download Full Size | PPT Slide | PDF

From the aforementioned results, the ultrafast dynamic of the LSFL formation on the GaP crystal is very different from the results on Si, which was reported [1]. First, the appearance of ripples on the GaP crystal is approximately several tens of picoseconds after laser pulse irradiation, which is much later than that of Si. This is not only determined by the electron-phonon coupling constant, but also the thermal properties of GaP, such as heat capacity and vaporization heat. Second, the laser fluence for fabricating GaP is higher than that for Si. The surface is ablated intensively and the phase explosion occurs. This means that the regular LSFL is formed by a very intense laser pulse, which is because high density plasma is excited on the GaP surface via two-photon absorption and needs most of the pulse energy. The SPP is excited by the front of the laser pulse. The laser-SPP interaction results in the spatially modulated laser field. It is important to notice that the second appearance of LSFL on the GaP after the material ejection was not reported in previous literature. Figures 3(k)–3(n) clearly show the structures of the ablation region. It is further demonstrated that the ripples disappear at 300–500 ps. The material is heated to a rather high temperature, thus inducing phase explosions, and the transient periodic ripples are erased. After the ejection is mostly finished, the residual modulated energy deposition caused by the SPPs, leads to the appearance of the final ripples.

Figure 12 shows that the average depth of the ablation crater increases linearly with the laser fluences. The ablation threshold is estimated to be 1.25 J/cm2, slightly less than the value on plain surface, which may be caused by the prefabricated nanogroove [14]. Many reports demonstrated that the crater depths increased logarithmically with laser fluences [3738], which is different from the results in Fig. 12. This may be caused by the complex distribution of laser field in the focus plane as shown in Figs. 1(b)–1(c) and the deep prefabricated nanogroove as shown in Fig. 2.

 

Fig. 12. Average depths of the ablation crater and heights of ripples vary with the laser fluences.

Download Full Size | PPT Slide | PDF

The ripples height as functions of laser fluences and pulse numbers were reported in [4042,4546]. The local thickness of the amorphous layer of ripples on silicon increased to tens of nanometers with laser fluences and pulse numbers, which was determined by analyzing the reflectivity [4042]. The periodic ripples on Ni-Fe film induced by single laser pulse were measured by AFM. The results demonstrated that the height of the periodic ripples in the inner region was deeper than those at the ablation edge because of the local intense SPP [45]. The height of the ripples shown in Fig. 12 increases from 8 to 18 nm as the laser fluence increases from 1.5 to 2.5 J/cm2. The ablation is more intensive, and the excited SPP is stronger for larger laser fluences, which induces deeper periodic ripples.

The experiments of the laser polarization parallel to the nanogroove were also conducted for comparison. The ablation spot and diffraction rings are similar to the case when the laser polarization is perpendicular to the nanogroove. However, no periodic ripples appear on GaP surface, which is because SPP can’t be efficiently launched when the laser polarization is parallel to the nanogroove [1,34].

If there is no prefabricated nanogroove, no periodic ripple is formed on the surface after a single pulse irradiation. Periodic ripples are fabricated on the ablation area only after several pulses irradiation, and the periods vary in 700–760 nm depending on the laser fluences [14].

3.3 Carrier excitation and two temperature model

When a femtosecond laser pulse incidents on the GaP surface, the electrons absorb the laser energy through two-photon absorption. The thermalization of the excited electrons occurs within several tens of femtoseconds due to the strong electron-electron scattering. During the thermalization, the electron temperature elevates rapidly while the lattice remains cool. The non-equilibrium system of hot electrons and cold lattice forms and can be described by the TTM model [47]. Meanwhile, high density of electrons (> 1021 cm−3) is excited on the GaP surface, and the optical properties of the crystal change from semiconductor to metallic-like material. Therefore, the Drude model is suitable to modify the TTM [1,47]. We perform theoretical calculations of the carrier excitation and the carrier and lattice temperatures using the TTM-DM to further demonstrate the evolution of the excited material after the femtosecond pulse hits the GaP surface.

The evolution of the carrier density Ne, electron temperature Te, and lattice temperature Tl are calculated by solving Boltzmann’s transport equations [1].

$$\frac{{\partial {N_\textrm{e}}}}{{\partial t}} = {D_\textrm{0}}\frac{\partial }{{\partial x}}\left( {\frac{{\partial {N_\textrm{e}}}}{{\partial x}}} \right) - \gamma N_\textrm{e}^3 + \delta {N_\textrm{e}}\textrm{ + }\frac{{\beta {F^2}}}{{2\hbar \omega }}\textrm{ }$$
$${C_\textrm{e}}\frac{{\partial {T_\textrm{e}}}}{{\partial t}} = {\kappa _\textrm{e}}\frac{\partial }{{\partial x}}\left( {\frac{{\partial {T_\textrm{e}}}}{{\partial x}}} \right) - \frac{{3{N_\textrm{e}}{k_\textrm{B}}}}{\tau }({{T_\textrm{e}} - {T_l}} )\textrm{ + }({{N_\textrm{e}}\theta } )F\textrm{ + }\beta {F^2}$$
$${C_l}\frac{{\partial {T_l}}}{{\partial t}} = {\kappa _l}\frac{\partial }{{\partial x}}\left( {\frac{{\partial {T_l}}}{{\partial x}}} \right)\textrm{ + }\frac{{3{N_\textrm{e}}{k_\textrm{B}}}}{\tau }({{T_\textrm{e}} - {T_l}} )$$
The parameters are listed in Table 1 [14,4851]. The ambipolar diffusion coefficient is calculated by D0 = 2 kBTeμhμe/(q(μe + μh)) [51], where μe = 189 cm2/(V·s) and μh = 140 cm2/(V·s) are the electron and hole mobility [52], respectively. kB, Te, and q are the Boltzmann constant, electron temperature, and electron charge, respectively. The free-carrier thermal conductivity is calculated by κe = 2kBmeNeTe/q, and me is the electron mass [53]. The specific heat capacity of the free electron is Ce = 3 kBNe. The lattice thermal conductivity of GaP is approximately 77 Wm−1 K−1 at 300 K. Because the lattice thermal conductivity decreases as the temperature increases, we use κl = 77 × 300/Tl in the calculation [54]. The three equations are numerically solved using the finite difference method. In addition, the initial GaP carrier density is set as 5 × 1016 cm−3 [54]. In the theoretical calculation, the laser pulse has a FWHM of 50 fs and the laser fluence is 2.5 J/cm2.

Tables Icon

Table 1. The parameters of GaP crystal at 800 nm light

Figure 13(a) shows the carrier density at the GaP surface irradiated by a 50 fs laser pulse with a laser fluence of 2.5 J/cm2. The inset shows an enlarged image of the evolution of the carrier density. The carrier density reaches a peak value of 4 × 1021 cm−3 at 265 fs due to two-photon absorption as shown in the last term in Eq. (1). Figure 13(b) shows the evolution of the carrier and lattice temperature at the laser fluence of 2.5 J/cm2. The carrier temperature drastically increases to 2.38 × 105 K due to the heat of a laser pulse. Subsequently, the highly energetic carriers heat the lattice through electron-phonon scattering. The melting temperature of the GaP is approximately 1730K. The equilibrium temperature is much higher than the melting temperature (Tmelt = 1730K) as shown in Fig. 13(b). The material ejection occurs during the ablation process.

 

Fig. 13. (a) The evolution of the carrier density at the GaP surface irradiated with a laser pulse of 50 fs and 2.5 J/cm2, where Ip is the laser pulse with a peak at 250 fs, and the peak of the carrier density is 275 fs. (b) The evolution of the electron temperature Te and lattice temperature Tl. (c) The evolution of the real and imaginary parts of the dielectric constant. (d) The refractive index and extinction coefficient vary with the carrier density Ne.

Download Full Size | PPT Slide | PDF

Figure 13(c) presents the evolution of the real part ɛ′ and imaginary part ɛ′′ of the dielectric constant. The real part of the dielectric constant ɛ′ of the GaP decreases steeply as the laser pulse irradiates the surface and decreases enough to satisfy the criterion of the SP excitation, Re(ɛ′)<−1 [15]. Figure 13(d) shows the evolution of the refractive index and extinction coefficient when carrier density changes in the range of 1017< Ne<1018 cm−3. The refractive index and extinction coefficient are calculated by using the equations [55], $n \textrm{ = }\sqrt {\left( {\sqrt {{{\varepsilon^{\prime}}^2}\textrm{ + }{{\varepsilon^{\prime\prime}}^2}} \textrm{ + }\varepsilon^{\prime}} \right)/2} ,\, k =\sqrt {\left( {\sqrt {{{\varepsilon^{\prime}}^2}\textrm{ + }{{\varepsilon^{\prime\prime}}^2}} \textrm{ - }\varepsilon^{\prime}} \right)/2}$.

Figure 14(a) illustrates the spatiotemporal dynamic of the real part of the dielectric constant. The black line defines a region in which the material is characterized by Re (ɛ′) < −1. This region enables the excitation of the SP. According to the image, the criterion of the SP excitation is satisfied at a maximum depth on the order of 1000 nm. Figure 14(b) shows the spatiotemporal evolution of the crystal temperature. The black line defines the liquid and solid phases when the latent melting heat is 26.9 kcal/mol and the melting temperature is 1730K.

 

Fig. 14. (a) Spatiotemporal evolution of the real part of the dielectric constant under the laser fluence of 2.5 J/cm2. The black line defines the limitation of SP excitation Re (ɛ′) = −1. (b) Spatiotemporal evolution of the crystal temperature along the direction of the incident laser. The black line defines the liquid and solid phases.

Download Full Size | PPT Slide | PDF

The distribution of electric field is calculated with COMSOL multiphysics software by solving the Maxwell equations [5658]. The simulation field is 6 × 30 µm2 in area, where a layer of air (3 µm thick), six layers of the excited GaP (200 nm thick) and the unexcited crystal (2.8 µm thick) are enclosed as shown in Fig. 15(a). To simplify the simulation, we use a rectangular shape as the prefabricated groove with a depth of 100 nm and a width of 400 nm. The dielectric constants of every layer for 800 nm light are listed in Fig. 15(a), which are originated from the spatiotemporal evolution results according to the TTM-DM. A plane wave of 800 nm illuminates perpendicularly on the sample surface. The simulation boundaries are taken as a perfect electric conductor (PEC) boundary in the y direction and a scattering boundary condition (SBC) in the x direction.

 

Fig. 15. (a) The surface plasma layer model. “Line 1”and “Line 2” are the observation lines. The groove with the depth of 100 nm and the width of 400 nm. SBC is the scattering boundary conditions. PEC is perfect electric conductor. (b)The electric field intensities at the air-plasma interface (green line) and at the plasma-crystal interface 40 nm below the surface (red dotted line) illuminated by 800 nm light.

Download Full Size | PPT Slide | PDF

The electric field distributions at the air-plasma interface and the plasma-substrate interface 40 nm below the surface beside the groove are shown in Fig. 15(b). The simulated results show that both of the electric field intensities follow a sinusoidal-like pattern and have the same period of approximately 730 nm. This theoretically demonstrates that the period of the final ripples at the subsurface is equal to the period of transient ripples at the surface. The value is approximately equal to the experimental result of 714 nm at the laser fluence of 2.5 J/cm2. We change the thickness of the plasma layer and the dielectric constants of the plasma layers except the surface layer, and the periods of the electric field intensities do not change. The simulation results indicate that all of the electric field distributions below the surface are determined by the surface energy deposition. This also demonstrated that the formations of both transient ripples and final ripples are resulted from the SPP excitation.

4. Conclusion

In summary, we study the LSFL formation induced by a single 800 nm, 50 fs laser pulse on GaP surface with a prefabricated nanogroove. The evolution process of surface ripples is clearly visualized around the nanogroove under different laser fluences. The onset of surface ripples is observed at several tens of picoseconds after the arrival of a pump pulse. After that, the ripples begin to disappear due to the material ejection, and disappear completely at several hundreds of picoseconds, leaving a transient overheating solid surface. New ripples appear after hundreds of picoseconds, and become deep and clear slowly. A part of these ripples remain after the ablation crater is solidified. The period of the remained ripples is equal to those of the two kinds of transient ripples.

TTM-DM is used to study the dynamics of the carrier excitation, carrier temperature, lattice temperature and the spatiotemporal evolution of the transient dielectric constant, where the thin surface plasma is treated as a multi-layer model. The electric field distributions at different depth of the plasma layer are performed with commercial software COMSOL. The theoretical results show that the periods of electric field distributions at different depths of plasma layer are the same, and agree well with the experimental results. The formation of the two kinds of transient ripples and the remained ripples are all related to periodic energy deposition due to the SPP excitation at the air-plasma interface.

Funding

National Natural Science Foundation of China (11474097, 11804227); State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)(19CK010301)

References

1. J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018). [CrossRef]  

2. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009). [CrossRef]  

3. H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013). [CrossRef]  

4. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013). [CrossRef]  

5. I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017). [CrossRef]  

6. Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017). [CrossRef]  

7. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017). [CrossRef]  

8. Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013). [CrossRef]  

9. L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017). [CrossRef]  

10. J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014). [CrossRef]  

11. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008). [CrossRef]  

12. Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018). [CrossRef]  

13. X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018). [CrossRef]  

14. J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016). [CrossRef]  

15. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009). [CrossRef]  

16. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009). [CrossRef]  

17. S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013). [CrossRef]  

18. A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017). [CrossRef]  

19. M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009). [CrossRef]  

20. Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012). [CrossRef]  

21. J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016). [CrossRef]  

22. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973). [CrossRef]  

23. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010). [CrossRef]  

24. W. He, J. Yang, and C. Guo, “Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time delayed femtosecond laser beams of different linear polarizations,” Opt. Express 25(5), 5156–5168 (2017). [CrossRef]  

25. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011). [CrossRef]  

26. K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017). [CrossRef]  

27. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983). [CrossRef]  

28. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004). [CrossRef]  

29. M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016). [CrossRef]  

30. R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013). [CrossRef]  

31. K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a prefabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015). [CrossRef]  

32. X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, “Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs,” Chin. Opt. Lett. 12(11), 113203 (2014). [CrossRef]  

33. X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014). [CrossRef]  

34. K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018). [CrossRef]  

35. J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013). [CrossRef]  

36. P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013). [CrossRef]  

37. T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003). [CrossRef]  

38. T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004). [CrossRef]  

39. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007). [CrossRef]  

40. F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018). [CrossRef]  

41. D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016). [CrossRef]  

42. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002). [CrossRef]  

43. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000). [CrossRef]  

44. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998). [CrossRef]  

45. K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017). [CrossRef]  

46. E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013). [CrossRef]  

47. M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39(2), 343–346 (2014). [CrossRef]  

48. M. S. Shur, “Handbook series on semiconductor parameters,” World Scientific1 (1996).

49. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005). [CrossRef]  

50. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983). [CrossRef]  

51. D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984). [CrossRef]  

52. S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).

53. S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, (1999).

54. P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967). [CrossRef]  

55. S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011). [CrossRef]  

56. Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019). [CrossRef]  

57. H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019). [CrossRef]  

58. J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
    [Crossref]
  2. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  3. H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
    [Crossref]
  4. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  5. I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
    [Crossref]
  6. Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
    [Crossref]
  7. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
    [Crossref]
  8. Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
    [Crossref]
  9. L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
    [Crossref]
  10. J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
    [Crossref]
  11. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
    [Crossref]
  12. Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
    [Crossref]
  13. X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
    [Crossref]
  14. J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
    [Crossref]
  15. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref]
  16. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  17. S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
    [Crossref]
  18. A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
    [Crossref]
  19. M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
    [Crossref]
  20. Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
    [Crossref]
  21. J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
    [Crossref]
  22. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [Crossref]
  23. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
    [Crossref]
  24. W. He, J. Yang, and C. Guo, “Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time delayed femtosecond laser beams of different linear polarizations,” Opt. Express 25(5), 5156–5168 (2017).
    [Crossref]
  25. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [Crossref]
  26. K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
    [Crossref]
  27. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  28. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
    [Crossref]
  29. M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
    [Crossref]
  30. R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
    [Crossref]
  31. K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a prefabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
    [Crossref]
  32. X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, “Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs,” Chin. Opt. Lett. 12(11), 113203 (2014).
    [Crossref]
  33. X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
    [Crossref]
  34. K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
    [Crossref]
  35. J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
    [Crossref]
  36. P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
    [Crossref]
  37. T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
    [Crossref]
  38. T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
    [Crossref]
  39. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [Crossref]
  40. F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
    [Crossref]
  41. D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
    [Crossref]
  42. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
    [Crossref]
  43. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
    [Crossref]
  44. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [Crossref]
  45. K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
    [Crossref]
  46. E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
    [Crossref]
  47. M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39(2), 343–346 (2014).
    [Crossref]
  48. M. S. Shur, “Handbook series on semiconductor parameters,” World Scientific1 (1996).
  49. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  50. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
    [Crossref]
  51. D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
    [Crossref]
  52. S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).
  53. S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, (1999).
  54. P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
    [Crossref]
  55. S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
    [Crossref]
  56. Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
    [Crossref]
  57. H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
    [Crossref]
  58. J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
    [Crossref]

2019 (3)

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

2018 (5)

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
[Crossref]

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

2017 (8)

W. He, J. Yang, and C. Guo, “Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time delayed femtosecond laser beams of different linear polarizations,” Opt. Express 25(5), 5156–5168 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
[Crossref]

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

2016 (4)

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (8)

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

2012 (1)

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

2011 (2)

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

2010 (1)

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

2009 (4)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

2008 (1)

2007 (1)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

2005 (1)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

2004 (2)

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

2003 (1)

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

2000 (1)

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

1984 (1)

D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

1983 (2)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

1967 (1)

P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
[Crossref]

Abdulhalim, I.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Adachi, S.

S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).

S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, (1999).

Adams, D. P.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Agassi, D.

D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

Altucci, C.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Amoruso, S.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Anastasiadis, S. H.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

Austin, D. R.

Barberoglou, M.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Beresna, M.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Bian, H. D.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Bounhalli, M.

Bragheri, F.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Bruzzese, R.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Cao, K.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Cao, X.

Cao, X. W.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Castillejo, M.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Cerkauskaite, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Chaliyawala, H. A.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Chen, L.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

Chen, Q.

Chen, Q. D.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Chen, Z.

Cheng, C. F.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Cheng, J.

Cheng, K.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Chowdhury, E. A.

Colombier, J. P.

Dai, Y.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Das, S. K.

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

de Abajo, F. J. G.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

de Aldana, J. R. V.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Debroy, A.

Deng, Q.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Derrien, T. J. Y.

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Diwakar, P. K.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Domingo, C.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Dong, Y.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Drevensek-Olenik, I.

Drevinskas, R.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ezquerra, T. A.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Fan, H.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Faure, N.

Feng, D.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Feng, D. H.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Fittipaldi, R.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Florian, C.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

Fotakis, C.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Freeman, J. R.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Fuentes-Edfuf, Y.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Gamaly, E. G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Garcia-Lechuga, M.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Garcia-Leis, A.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Garcial-Lechuga, M.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Garrelie, F.

Gesuele, F.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Gnilitskyi, I.

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Grunwald, R.

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large band gap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guo, C.

Hampp, N.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Harbrecht, B.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Harilal, S. S.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Hashida, M.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Hassanein, A.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

He, M.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

He, W.

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Hernández, M.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Hernandez-Rueda, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Hou, S.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Hu, Z.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Huang, Y.

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

Huo, Y.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Ikuta, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Ilday, F. Ö.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Jia, T.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, “Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs,” Chin. Opt. Lett. 12(11), 113203 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Jia, T. Q.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Jia, X.

Jiang, Q.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

Juodkazis, S.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637–642 (2017).
[Crossref]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Kafka, K. R. P.

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kazansky, P. G.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Khanna, S.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Kim, H. C.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Kruempelmann, J.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Kruger, J.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kühler, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Lei, Y.

Leiderer, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Levy, Y.

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Li, H.

Li, Q.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Li, X. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Liu, J.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Lu, B.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Ma, G. H.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Maddalena, P.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Martín-Fabiani, I.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Maycock, P. D.

P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
[Crossref]

McGlynn, E.

Messaoudi, H.

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Miyasaka, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Molian, P.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Moreno, P.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Mosbacher, M.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Mukhopadhyay, I.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Murphy, R. D.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Nie, Y.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Nivas, J. J.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Okamuro, K.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Osellame, R.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Pan, J.

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Parriaux, O.

Patel, A.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Pati, R.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Peng, N.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Pietzonka, C.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Pigeon, F.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Puerto, D.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Purohit, Z.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Qiu, J.

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Raciukaitis, G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Ray, A.

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

Rebollar, E.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Reinhardt, H.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Reynaud, S.

Roling, B.

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Rosenfeld, A.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Rueda, D. R.

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Sakab, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Sanchez-Cortes, S.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Sang, T.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Shuai, B.

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Shur, M. S.

M. S. Shur, “Handbook series on semiconductor parameters,” World Scientific1 (1996).

Siegel, J.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Solis, J.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Solodar, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Spanakis, E.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Stankevic, V.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Stratakis, E.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

Sun, H.

Sun, H. B.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Sun, H. Y.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Sun, Z.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, “Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs,” Chin. Opt. Lett. 12(11), 113203 (2014).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Sun, Z. R.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Tang, B.

Tian, W.

Tokita, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Tonchev, S.

Torralva, B.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Tzanetakis, P.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Verhoff, B.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Wang, H. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Wang, J.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Wang, L.

Wang, M.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Wang, X.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Wu, Q.

Wu, W.

Xi, H.

Xia, Y.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

Xiong, P.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Xu, B.

Xu, J.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Xu, N. S.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

Xu, Z.

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Yalisove, S. M.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Yan, X. N.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

Yang, D.

Yang, J.

Yang, L.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Yang, M.

Yao, J.

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Yi, A. Y.

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Yuan, Y.

Zhang, B.

Zhang, F.

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Zhang, H.

Zhang, J.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhang, L.

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Zhang, N.

Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Zhang, S.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Zhang, S. A.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Zhang, Y.

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

Zhao, H.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

Zheng, C.

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

Zhou, K.

K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Periodic surface structures on Ni–Fe film induced by a single femtosecond laser pulse with diffraction rings,” Chin. Opt. Lett. 15(2), 022201 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Zorba, V.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

ACS Photonics (2)

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Adv. Mater. (1)

H. Reinhardt, H. C. Kim, C. Pietzonka, J. Kruempelmann, B. Harbrecht, B. Roling, and N. Hampp, “Self organization of multifunctional surfaces-the fingerprints of light on a complex system,” Adv. Mater. 25(24), 3313–3318 (2013).
[Crossref]

Appl. Phys. A (2)

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A 106(3), 567–574 (2012).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Appl. Phys. Lett. (4)

T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining in dielectrics by using femtosecond lasers,” Appl. Phys. Lett. 82(24), 4382–4384 (2003).
[Crossref]

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 141104 (2013).
[Crossref]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser,” Appl. Phys. Lett. 84(1), 10–12 (2004).
[Crossref]

Appl. Surf. Sci. (1)

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Beilstein J. Nanotechnol. (1)

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. G. de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4(1), 501–509 (2013).
[Crossref]

Chin. Opt. Lett. (2)

J. Appl. Phys. (6)

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004).
[Crossref]

D. Agassi, “Phenomenological model for picosecond-pulse laser annealing of semiconductors,” J. Appl. Phys. 55(12), 4376–4383 (1984).
[Crossref]

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (3)

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D: Appl. Phys. 49(43), 435105 (2016).
[Crossref]

S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, and Z. Xu, “Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses,” J. Phys. D: Appl. Phys. 44(50), 505401 (2011).
[Crossref]

J. Wang, L. Yang, M. Wang, Z. Hu, Q. Deng, Y. Nie, F. Zhang, and T. Sang, “Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures,” J. Phys. D: Appl. Phys. 52(1), 015101 (2019).
[Crossref]

Laser Phys. (1)

Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, and Z. Sun, “Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water,” Laser Phys. 23(5), 056101 (2013).
[Crossref]

Nanomaterials (1)

X. W. Cao, Q. D. Chen, H. Fan, L. Zhang, S. Juodkazis, and H. B. Sun, “Liquid-assisted femtosecond laser precision-machining of Silica,” Nanomaterials 8(5), 287 (2018).
[Crossref]

Nanotechnology (2)

H. A. Chaliyawala, Z. Purohit, S. Khanna, A. Ray, R. Pati, and I. Mukhopadhyay, “Effective light polarization insensitive and omnidirectional properties of Si nanowire arrays developed on different crystallographic planes,” Nanotechnology 30(12), 124002 (2019).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Nat. Photonics (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Opt. Express (7)

J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse,” Opt. Express 26(5), 6302–6315 (2018).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref]

Y. Lei, N. Zhang, J. Yang, and C. Guo, “Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces,” Opt. Express 26(5), 5102–5110 (2018).
[Crossref]

W. He, J. Yang, and C. Guo, “Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time delayed femtosecond laser beams of different linear polarizations,” Opt. Express 25(5), 5156–5168 (2017).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref]

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a prefabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Phys. Chem. Chem. Phys. (1)

E. Rebollar, J. R. V. de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref]

Phys. Rev. (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. 27(2), 985–1009 (1983).
[Crossref]

Phys. Rev. B (5)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
[Crossref]

K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, “Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film,” Phys. Rev. B 98(18), 184106 (2018).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakab, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Phys. Rev. Lett. (2)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref]

Plasmonics (1)

Y. Xia, H. Zhao, C. Zheng, S. Zhang, D. Feng, Z. Sun, and T. Jia, “Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser,” Plasmonics 14(2), 523–531 (2019).
[Crossref]

Proc. SPIE (1)

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
[Crossref]

Sci. Rep. (4)

I. Gnilitskyi, T. J. Y. Derrien, and Y. Levy, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Solid-State Electron. (1)

P. D. Maycock, “Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys,” Solid-State Electron. 10(3), 161–168 (1967).
[Crossref]

Spectrochim. Acta, Part B (1)

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectrochim. Acta, Part B 87, 43–50 (2013).
[Crossref]

Other (3)

S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).

S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media, (1999).

M. S. Shur, “Handbook series on semiconductor parameters,” World Scientific1 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) The experiment setup. DL: delay line, BS: beam splitter. (b) The concave lens increases the focus radius from 2.6 µm to 28 µm. (c) Blue triangle line: the emission intensity on a ZnSe crystal along the white arrow in (b). Red rectangular line: the calculated laser intensity according to the emission intensity. (d) The spectra of the white-light pulse before (blue solid curve) and after the short-pass filter (black dotted curve) [1].
Fig. 2.
Fig. 2. (a) AFM image of the femtosecond laser fabricated nanogroove on the GaP crystal. (b) Cross-profiles of the nanogroove at different positions marked in (a).
Fig. 3.
Fig. 3. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 2.5 J/cm2.
Fig. 4.
Fig. 4. The intensity profiles along the arrows in Fig. 3.
Fig. 5.
Fig. 5. (a) AFM image of the ablation crater by a single laser pulse at a laser fluence F = 2.5 J/cm2. (b) The height profile along the line I in (a). The inset is the part of the rectangle in (b).
Fig. 6.
Fig. 6. Laser-induced thin plasma layer supporting the SPPs at the interface of the air plasma resulting in the formation of LSFL by periodic energy deposition.
Fig. 7.
Fig. 7. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 2.1 J/cm2.
Fig. 8.
Fig. 8. The intensity profiles along the arrows in Fig. 7.
Fig. 9.
Fig. 9. OM images measured at different delay times after irradiation by a single pump pulse with a laser fluence of 1.7 J/cm2.
Fig. 10.
Fig. 10. The intensity profiles along the arrows in Fig. 9.
Fig. 11.
Fig. 11. Delay times when the ripples first appearance, best, disappearance, and second appearance.
Fig. 12.
Fig. 12. Average depths of the ablation crater and heights of ripples vary with the laser fluences.
Fig. 13.
Fig. 13. (a) The evolution of the carrier density at the GaP surface irradiated with a laser pulse of 50 fs and 2.5 J/cm2, where Ip is the laser pulse with a peak at 250 fs, and the peak of the carrier density is 275 fs. (b) The evolution of the electron temperature Te and lattice temperature Tl. (c) The evolution of the real and imaginary parts of the dielectric constant. (d) The refractive index and extinction coefficient vary with the carrier density Ne.
Fig. 14.
Fig. 14. (a) Spatiotemporal evolution of the real part of the dielectric constant under the laser fluence of 2.5 J/cm2. The black line defines the limitation of SP excitation Re (ɛ′) = −1. (b) Spatiotemporal evolution of the crystal temperature along the direction of the incident laser. The black line defines the liquid and solid phases.
Fig. 15.
Fig. 15. (a) The surface plasma layer model. “Line 1”and “Line 2” are the observation lines. The groove with the depth of 100 nm and the width of 400 nm. SBC is the scattering boundary conditions. PEC is perfect electric conductor. (b)The electric field intensities at the air-plasma interface (green line) and at the plasma-crystal interface 40 nm below the surface (red dotted line) illuminated by 800 nm light.

Tables (1)

Tables Icon

Table 1. The parameters of GaP crystal at 800 nm light

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N e t = D 0 x ( N e x ) γ N e 3 + δ N e  +  β F 2 2 ω  
C e T e t = κ e x ( T e x ) 3 N e k B τ ( T e T l )  +  ( N e θ ) F  +  β F 2
C l T l t = κ l x ( T l x )  +  3 N e k B τ ( T e T l )

Metrics