Abstract

In this paper, we report the fabrication of lithium niobate (LN) microdisk resonators on a pulsed-laser deposited polycrystalline LN film on a silicon substrate rather than commercially provide LN film on insulator. The quality factor of these polycrystalline LN microdisks were measured above $3.4 \times 10^4$ in the 1550-nm band. Second harmonic generation was demonstrated in the fabricated microresonators. Because the properties of homemade LN film can be easily tuned by doping various ions, LN devices on homemade LN film may have more flexible functions and broad applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Lithium niobate (LiNbO$_3$, LN) is a versatile dielectric material that is widely used in accoustic, electronic and photonic devices ranging from optical modulators to wavelength convertors, thanks to its outstanding acousto-optic, electro-optic, elasto-optic, and nonlinear properties [1]. Recently, LN on insulator (LNOI) prepared by ion slicing and wafer bonding techniques has been brought to the market by NANOLN in Jinan, China, which boost the investigation of on-chip LN photonic devices, such as waveguides [25], electro-optic modulators [610], microrings [6,7,1113], microdisks [9,10,1420,22,23], photonic crystal cavities [24], optomechanical crystals [25], and acousto-optic modulators [26]. The size and properties of the commercially provided LNOI wafers were constrained by the corresponding properties of the LN single crystal rod, from which the LN film was sliced. At present, LNOI wafer commercially available in batch quantity is generally of 3 or 4 inches in diameter, which is not compatible with the mature semiconductor processing technology that usually handles 8-, 10-, and 12-inch wafers in order to save costs. Additionally, it is difficult to get ion doped LNOI for particular photonic applications, such as lasing and self-pumped nonlinear effects [27].

LN whispering gallery microresonators made on LNOI have attracted explosive attention owning to their abilities to trap light in a small volume for a long time via total internal reflection, which is effective in the whole material transparent window. Combining the excellent nonlinear optical properties of LN and the tremendous light field enhancement in micro-resonators, a series of nonlinear optical effects, such as second harmonic generation (SHG) [1421], sum-frequency generation [22,23], and optical parametric oscillation [17,28], were demonstrated in high-Q LN micro-resonators on a chip. Electro-optical modulator with more than 40 GHz modulation rate [8], electro-optic frequency comb [12] and soliton frequency comb based on the third-order nonlinear optical effects of LN film were also reported in LN microring resonators [13].

In this work, we successfully fabricated LN thin film on the Si substrate via pulsed laser deposition (PLD) method. Based on the homemade LN film, LN microdisk cavities were prepared by using semiconductor compatible fabrication techniques including UV-lithography, Ar$^+$ plasma etching and XeF$_2$ etching. The quality factors of the LN disk cavities are above $10^4$ in the 1550-nm band. Second harmonic generation (SHG) was demonstrated in these LN microdisks. In principle, LN film doped with various ions can easily be produced by PLD method [29,30], therefore, our work proposes a cost effective method to develop LN microphotonic devices with versatile functions.

2. Fabrication methods

The fabrication process for the polycrystalline microdisk resonators is schematically illustrated in Fig. 1. The fabrication process consists of two main parts: the preparation of LN films on Si substrate (Step 1 in Fig. 1); the fabrication of microdisk resonators (Steps 2-4 in Fig. 1). LN film was deposited on a Si (111) substrate with the PLD method using a krypton fluoride (KrF) excimer laser. Si (111) has threefold symmetry, which is similar to the symmetry of LN (001). Therefore, it is beneficial to the preferential growth of LN (001) that is the plane perpendicular to the optical axis of LN crystal [31]. In contrast, silica is an amorphous material, it is not a good choice as the substrate for crystalline material deposition.

 figure: Fig. 1.

Fig. 1. Schematic of the fabrication process of polycrystalline LN microdisks. The green, red and gray parts indicate LN, photoresist (PR) and Si, respectively. (1) Deposition of LN film on Si substrate by using pulsed laser deposition (PLD). (2) Ultra-violet lithography to make a PR pad. (3) PR developing. (4) Ar$^+$ plasma etching to remove unprotected LN film. (5) Wiping out residual PR by acetone. (6) XeF$_2$ dry etching to form a silicon pillar.

Download Full Size | PPT Slide | PDF

In the growth chamber, the Si substrate was first heated to 700$^\circ$C and kept at this temperature for 10 min to remove the impurities on the substrate and therefore to improve the adhesion between the LN film and the Si substrate [30]. During deposition, the temperature of the Si substrate was kept at 600$^\circ$C and the oxygen pressure in the chamber was kept at 30 Pa [30]. A KrF excimer laser with a 248-nm wavelength, a 25-ns pulse width, and a 3-Hz repetition rate was focused with a tilting angle of 45$^\circ$ on the surface of a rotating Z-cut LN single crystal, which served as the target to generate lithium and niobate ions to form LN film on the Si substrate. The laser energy density on the surface of the target was 1.5 J/cm$^2$. After deposition, in-situ annealing of 30 min was performed in a 10$^5$ Pa oxygen atmosphere to release the stress in the deposited LN film. The film thickness can be controlled by deposition time. LN films without cracks with thicknesses ranging from 100 nm to 700 nm can be grown in our lab.

The detailed fabrication process for the LN disk is illustrated in Fig. 1, steps 2-6. A layer of S1813 photoresist of about 1.5-$\rm {\mu }$m thickness was spin-coated on the top surface of the deposited LN film. The photoresist was covered by a Cr mask and then irradiated by an UV light of 300-mJ/cm$^2$ exposure dose in contact exposure mode. The disk pattern on the Cr mask was transfered to the photoresist through MF-319 developer. After that, the inductively coupled plasma reactive ion etching (ICP-RIE) technology was employed to remove the exposed LN film [32] and therefore to keep the covered part to form the LN microdisk. The photoresist was then removed by aceton, and the sample was put into a XeF$_2$ chamber to etch Si substrate [33] to form a Si pillar with a smaller diameter to support the LN disk. In this way, the suspended LN microdisk resonator was produced by finally separating the edge of LN microdisk from the high-refractive-index Si substrate.

3. Characterization of LN thin films and microdisk resonators

The surface topography of the deposited LN thin film was measured by an atomic force microscope and is shown in Fig. 2(a), which demonstrates a 7.2-nm surface roughness. Compared with the deposited LN film on silica with a roughness of 15.47 nm [34], the LN film on Si (111) have lower surface roughness. Such a smooth surface is crucial to suppress light scattering and hence help us to obtain integrated low-loss photonic devices, for example, microresonators with high quality factors and waveguides with low loss. The crystalline structure of the deposited LN thin film was characterized by X-ray diffraction (XRD) method. A typical XRD spectrum of a LN thin films on a Si (111) substrate is shown in Fig. 2(b). The characteristic peaks of LN crystal such as (006), (116), (018), and (1, 0, 10) are clearly seen in the XRD spectrum. The simultaneous appearance of multiple diffraction peaks indicates a polycrystalline structure of the deposited LN film. These diffraction peaks were confirmed by comparing the measured results with the standard diffraction peaks of LN in powder diffraction file (No. 04-002-7353). Additionally, the diffraction peaks of silicon, Nb$_2$O$_5$ and LiNb$_3$O$_8$ were also observed in Fig. 2(b). The emergence of XRD peaks for Nb$_2$O$_5$ and LiNb$_3$O$_8$ is a result of Li$^+$ diffusion during the film deposition process. The piezo-electric force image of the LN film shown in Fig. 2(c) also indicates the polycrystalline structure to some degree by showing the relative phase distribution of the optical axis. It is seen from Fig. 2(c) that the maximum size of the region with the optical axis pointing in the same direction is less than 0.5 $\rm {\mu }m^2$. The relative phases of the optical axis along the yellow line in Fig. 2(c) are plotted in Fig. 2(d), which shows that the phase change between neighboring regions is generally not equal to $\pi$, differing from periodically poled LN samples with a $\pi$ phase shift.

 figure: Fig. 2.

Fig. 2. Characterization of the deposited LN film on Si substrate. (a) Atomic force microscope image showing the surface roughness. (b) X-ray diffraction spectrum. (c) The piezo-electric force image of the LN film. (d) The relative phases of the optical axis of LN film along the yellow line in Fig. 2(c).

Download Full Size | PPT Slide | PDF

The topographic characteristics of the LN microdisk resonator fabricated from the homemade polycrystalline LN film on a Si substrate were measured by using both optical and electron microscopes. Figure 3(a) is the optical microscope image of a typical microdisk, whose radius is measured to be 29 $\rm {\mu }$m. From Fig. 3(a), we can vaguely see crisscrossed textures in the circular LN pad, which introduce scattering that limit the quality factor of the microdisk resonator. Scanning electron microscope was employed to get the three dimensional image of the LN microdisk. Figures 3(b) and 3(c) shows the tilt view and side view of a LN disk on a silicon chip, respectively. Because our LN film was directly deposited onto the silicon substrate, the LN microdisk has a silicon pillar that was produced by isotropic XeF$_2$ etching. From Fig. 3(b), it is seen that the silicon pillar is very like those for silica resonators on a silicon chip, such as toroid and disk resonators. For microdisk resonators with several ten $\rm {\mu }$m diameter, the height of the silicon pillar is always tens of $\rm {\mu }$m. Such a pillar height makes the alignment of the coupling waveguide that is used to exchange light with the LN microdisk easier. In contrast, the LN microdisk resonators on LN film on insulator commonly have silica pillar with about 2 $\rm {\mu }$m height, which equals the thickness of the silica layer between the LN film and LN substrate. From the side view of the LN disk (Fig. 3(c)), we can deduce the three-dimensional shape the LN pad of the fabricated resonator including the thickness and tilt angle of the side wall with respect to the horizontal line, which were measured as 567 nm and 40$^\circ$, respectively. These information will be used to numerically calculate the eigenmodes of the LN resonator.

 figure: Fig. 3.

Fig. 3. Characterization of the polycrystalline LN microdisk on a silicon chip. (a) Optical microimage. (b, c) Scanning electron images showing the tilt and side views of the LN microdisk, respectively. (d) Transmission spectrum indicating a quality factor of 3.4$\times$10$^4$. (e) Broad-band transmission spectrum showing the free spectrum range.

Download Full Size | PPT Slide | PDF

To characterize the optical properties of the fabricated LN resonator, the transmission spectra of the resonator coupled with a tapered fiber were measured using a tunable laser in communication band near 1550 nm. The experimental setup is similar to that used in our previous work [35]. The highest quality factor of our LN micro-disk was measured to be 3.4$\times$10$^4$, as shown in Fig. 3(d). We also recorded the broad-band transmission spectrum as shown in Fig. 3(e), where the mode in Fig. 3(d) is highlighted in red. From Fig. 3(e), the free spectrum ranges (FSR) for the observed whispering gallery modes were measured ranging from 5.9 nm to 6.5 nm. Assuming the polycrystalline LN film is an isotropic material, we theoretically calculated the resonance frequencies of the LN disk resonator using the size deduced from the microscope images, i.e. 29 $\rm {\mu }$m outer radius, 567 nm thickness and 40$^\circ$ tilt angle for the side wall. By varying the complex refractive index of LN film to make the theoretical resonance frequencies and quality factor approach the measured results, we estimated the refractive index and effective absorption coefficient of the deposit LN film. The refractive index was derived as 2.04, which is lower than both the ordinary and extraordinary refractive indices typically about 2.2 and 2.1, respectively, for monocrystalline LN crystal grown by Czochralski method [36]. It means that the material density of the deposited LN film is lower than the monocrystalline LN. The effective absorption coefficient was induced to be 2.4 cm$^{-1}$ according to $Q=2\pi n_\textrm {eff}/\alpha \lambda$, where $n_\textrm {eff}$ is the effective refractive index of the whispering gallery mode, $\alpha$ indicates the effective absorption coefficient, and $\lambda$ represents the resonance wavelength. Although such an effective absorption coefficient includes the influence of the scattering and the radiation loss, it is useful to estimate the loss of the micro-photonic devices such as waveguides and ring resonators following the similar fabrication procedure.

We can produce monocrystalline LN microdisk resonators with quality factors higher than one million from LNOI samples by using similar fabrication recipe [9]. It means that we have the ability to suppress the scattering loss due to the surface roughness of the side wall introduced during the fabrication process for the microdisk. Therefore, we consider the quality factors of the fabricated LN microdisk resonator of the order of 10$^4$ are mainly constrained by the loss of the LN film, including the contributions from the relative rough surface and the inhomogeneous distribution of material density and optical axis direction. The loss of the deposited LN film on a silicon substrate can be reduced by optimizing the parameters during the depositing process such as the substrate temperature and atmosphere pressure. Although the qualities of the LN film and the LN mcirodisk resonator are need to be significantly improved, we show the possibility to produce high quality photonic devices with flexible function on large size LN film wafers, because by using PLD method one can fabricate LN film doped or co-doped with active ions such as erbium, ytterbium, thulium, and so on, on a large size silicon wafer compatible with semiconductor industry. On the contrary, It is difficult at present to get doped LN film on insulator via smart-slicing method owning to the lack of suitable LN crystal rod.

4. SHG in LN microdisks

It is well known that congruent LN crystal has large second order nonlinear optical coefficients with d$_{33}$ = 25.2 pm/V, d$_{31}$ = 4.6 pm/V, and d$_{22}$ = 2.8 pm/V at 1064 nm. Therefore, we demonstrate the SHG in the fabricate polycrystalline LN microdisks, although the nonlinear optical coefficients of polycrystalline LN is usually much lower than the monocrystalline one [34]. The experimental setup that was used to perform nonlinear optical experiments are similar to that shown in [37]. A tapered fiber with a diameter of about 1 $\rm {\mu }$m is used to couple the 1550 nm band pump light into the LN microdisk and to extract the second harmonic signal simultaneously. The polarization of the pump beam was tuned by a polarization controller before entering the LN microdisk, by which the coupling efficiency of the pump beam can be tuned. The coupling efficient of light between the LN microdisk and the tapered fiber can also to adjust by changing the gap between them. A photodetector was place after the LN microdisk to monitor the transmission of the 1550 nm band pump and thus the coupling situation between the disk and the tapered fiber. The collected nonlinear optical signal in the tapered fiber was sent to a spectrometer and then converted to electrical signal, which can be recorded and processed in a computer.

Figure 4(a) shows a typical second harmonic signal detected with a pump at 1539.4 nm. A series of second harmonic signals similar to that shown in Fig. 4(a) were recorded while scanning the pump power. Therefore, we can obtain the dependence of the SHG signal power on the pump power, from which the conversion efficiency of the SHG process can be derived. Note that due to resonance wavelength drift induced by the thermal effect [38] and the photorefractive effect of the LN microdisk [39], the wavelength of the pump beam may need to be tuned accordingly to get the highest second harmonic signal when the pump power was adjusted. Figure 4(b) demonstrates a curve of the SHG signal conversion efficiency, which is defined as the ratio between the power of the SHG signal and that of the pump, versus the pump power showing a normalized SHG conversion efficiency of 2.1$\times$10$^{-10}$ mW$^{-1}$. This conversion efficiency is several orders of magnitude lower than the recorded SHG conversion efficiency 3.8$\times$10$^{-2}$ mW$^{-1}$ in monocrystalline LN microresonators [19] and 2.2$\times$10$^{-6}$ mW$^{-1}$ in periodically poled LN microdisks on a chip [37]. There are several important factors that reduce the nonlinear conversion efficiency: (1) The lower nonlinear coefficient of polycrystalline material with respect to their monocrystalline counterparts [34]; (2) Failure to realize phase matching based on birefringence effects. If the order of the direction of the optical axis for the deposited LN film can be improved, the effective nonlinear optical coefficient can be significantly increased even to that of the monocrystalline LN crystal. The techniques that can realize phase matching in polycrystalline LN devices deserve to be investigated in detail.

 figure: Fig. 4.

Fig. 4. Second harmonic generation in fabricate polycrystalline LN microdisk resonators. (a) SHG signal with a pump at 1539.4 nm. (b) The dependence of SHG conversion efficiencies to pump power indicating a 2.1$\times$10$^{-10}$ mW$^{-1}$ normalized conversion efficiency.

Download Full Size | PPT Slide | PDF

5. Conclusions

In summary, we successfully fabricated LN thin film on the Si(111) substrate via pulsed laser deposition. Then on-chip LN microdisk resonators with qualify factors above 10$^4$ were directly prepared on LN on silicon wafer by using UV-lithography, Ar$^+$ plasma etching and XeF$_2$ etching techniques in turn. SHG effect with conversion efficiency of 2.1$\times$10$^{-10}$ mW$^{-1}$ were demonstrated in the fabricated polycrystalline LN microdisks. Our work shows the possibility to mass produce LN photonic devices with versatile functions on a silicon wafer with semiconductor compatible fabrication techniques.

Funding

National Natural Science Foundation of China (11674181, 11674184, 11734009, 11774182); PCSIRT (IRT_13R29); National Science Fund for Talent Training in the Basic Sciences; CAS Interdisciplinary Innovation Team; 111 Project (B07013).

References

1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004). [CrossRef]  

2. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015). [CrossRef]  

3. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015). [CrossRef]  

4. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017). [CrossRef]  

5. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018). [CrossRef]  

6. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007). [CrossRef]  

7. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018). [CrossRef]  

8. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018). [CrossRef]  

9. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015). [CrossRef]  

10. M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017). [CrossRef]  

11. R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5(7), 872–875 (2018). [CrossRef]  

12. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019). [CrossRef]  

13. Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO$_3$ soliton microcomb,” Optica 6(9), 1138–1144 (2019). [CrossRef]  

14. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014). [CrossRef]  

15. J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015). [CrossRef]  

16. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$ microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016). [CrossRef]  

17. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017). [CrossRef]  

18. J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

19. M. Eichenfield, “Reduced dimensionality lithium niobate microsystems,” (Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2017).

20. J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019). [CrossRef]  

21. Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys., Mech. Astron. 62(7), 74231 (2019). [CrossRef]  

22. S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42(18), 3626–3629 (2017). [CrossRef]  

23. Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017). [CrossRef]  

24. H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017). [CrossRef]  

25. W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

26. L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

27. S. J. Herr, C. S. Werner, K. Buse, and I. Breunig, “Quasi-phase-matched self-pumped optical parametric oscillation in a micro-resonator,” Opt. Express 26(8), 10813–10819 (2018). [CrossRef]  

28. W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018). [CrossRef]  

29. W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019). [CrossRef]  

30. W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$/Si heterojunction,” Materials 12(17), 2659 (2019). [CrossRef]  

31. A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$ and LiTaO$_3$ thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017). [CrossRef]  

32. G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016). [CrossRef]  

33. R. Toda, K. Minami, and M. Esashi, “Thin-beam bulk micromachining based on RIE and xenon difluoride silicon etching,” Sens. Actuators, A 66(1-3), 268–272 (1998). [CrossRef]  

34. F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015). [CrossRef]  

35. F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39(7), 1841–1844 (2014). [CrossRef]  

36. D. Nelson and R. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688–3689 (1974). [CrossRef]  

37. Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018). [CrossRef]  

38. J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016). [CrossRef]  

39. H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, “Fast response of photorefraction in lithium niobate microresonators,” Opt. Lett. 42(17), 3267–3270 (2017). [CrossRef]  

References

  • View by:

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
    [Crossref]
  2. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015).
    [Crossref]
  3. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [Crossref]
  4. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [Crossref]
  5. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
    [Crossref]
  6. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  7. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref]
  8. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  9. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
    [Crossref]
  10. M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
    [Crossref]
  11. R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5(7), 872–875 (2018).
    [Crossref]
  12. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
    [Crossref]
  13. Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO$_3$3 soliton microcomb,” Optica 6(9), 1138–1144 (2019).
    [Crossref]
  14. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref]
  15. J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
    [Crossref]
  16. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
    [Crossref]
  17. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
    [Crossref]
  18. J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.
  19. M. Eichenfield, “Reduced dimensionality lithium niobate microsystems,” (Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2017).
  20. J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
    [Crossref]
  21. Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys., Mech. Astron. 62(7), 74231 (2019).
    [Crossref]
  22. S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42(18), 3626–3629 (2017).
    [Crossref]
  23. Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
    [Crossref]
  24. H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
    [Crossref]
  25. W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).
  26. L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).
  27. S. J. Herr, C. S. Werner, K. Buse, and I. Breunig, “Quasi-phase-matched self-pumped optical parametric oscillation in a micro-resonator,” Opt. Express 26(8), 10813–10819 (2018).
    [Crossref]
  28. W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018).
    [Crossref]
  29. W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
    [Crossref]
  30. W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
    [Crossref]
  31. A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
    [Crossref]
  32. G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
    [Crossref]
  33. R. Toda, K. Minami, and M. Esashi, “Thin-beam bulk micromachining based on RIE and xenon difluoride silicon etching,” Sens. Actuators, A 66(1-3), 268–272 (1998).
    [Crossref]
  34. F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
    [Crossref]
  35. F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39(7), 1841–1844 (2014).
    [Crossref]
  36. D. Nelson and R. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688–3689 (1974).
    [Crossref]
  37. Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
    [Crossref]
  38. J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
    [Crossref]
  39. H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, “Fast response of photorefraction in lithium niobate microresonators,” Opt. Lett. 42(17), 3267–3270 (2017).
    [Crossref]

2019 (6)

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, and Q. Lin, “A self-starting bi-chromatic LiNbO$_3$3 soliton microcomb,” Optica 6(9), 1138–1144 (2019).
[Crossref]

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys., Mech. Astron. 62(7), 74231 (2019).
[Crossref]

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

2018 (7)

S. J. Herr, C. S. Werner, K. Buse, and I. Breunig, “Quasi-phase-matched self-pumped optical parametric oscillation in a micro-resonator,” Opt. Express 26(8), 10813–10819 (2018).
[Crossref]

W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5(7), 872–875 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

2017 (8)

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42(18), 3626–3629 (2017).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref]

H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, and Q. Lin, “Fast response of photorefraction in lithium niobate microresonators,” Opt. Lett. 42(17), 3267–3270 (2017).
[Crossref]

A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
[Crossref]

2016 (3)

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
[Crossref]

2015 (5)

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tunnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref]

2014 (2)

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

1998 (1)

R. Toda, K. Minami, and M. Esashi, “Thin-beam bulk micromachining based on RIE and xenon difluoride silicon etching,” Sens. Actuators, A 66(1-3), 268–272 (1998).
[Crossref]

1974 (1)

D. Nelson and R. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688–3689 (1974).
[Crossref]

a. P. A. Lai, K. J.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

a. P. A. Safavi-Naeini, A. H. J.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Andrade, N.

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

Arrangoiz-Arriola, P.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Atikian, H. A.

Baida, F. I.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Baron, T.

A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
[Crossref]

Bartasyte, A.

A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
[Crossref]

Bernal, M. P.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Bo, F.

W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref]

F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39(7), 1841–1844 (2014).
[Crossref]

Bonaus, S.

Boulet, P.

A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
[Crossref]

Breunig, I.

Burek, M. J.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Buse, K.

Cai, L.

Calero, V.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Camacho, R.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chen, X.

Chen, Y.

Cheng, Y.

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Chia, C.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Chu, W.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

Cui, J.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Deng, W.

Desiatov, B.

Diziain, S.

Douglas, J. K.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

Eichenfield, M.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

M. Eichenfield, “Reduced dimensionality lithium niobate microsystems,” (Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2017).

Esashi, M.

R. Toda, K. Minami, and M. Esashi, “Thin-beam bulk micromachining based on RIE and xenon difluoride silicon etching,” Sens. Actuators, A 66(1-3), 268–272 (1998).
[Crossref]

Fang, W.

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Fang, Z.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Fejer, M. M.

Frank, I. W.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

Friedmann, T. A.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

Gao, A.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Gao, F.

Gao, X.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Geiss, R.

Grange, R.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Gunter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guo, G.-C.

Hao, Z.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
[Crossref]

He, Y.

Herr, S. J.

Hu, H.

Huang, I. C.

Huang, S. H.

Jankowski, M.

Jia, L.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

Jia, Y.

Jiang, H.

Jiang, W.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Kley, E.-B.

Kong, Y.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Langrock, C.

Li, J.

Li, M.

Li, W.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref]

Li, Y.

Liang, H.

Liao, Y.

Lin, J.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Lin, Q.

Lin, Z.

Ling, J.

Lipson, M.

Liu, H.

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

Liu, S.

Loncar, M.

Luo, R.

Lyu, X.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Ma, S.

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

Maity, S.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Mao, W.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

Marandi, A.

Margueron, S.

A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
[Crossref]

Mayor, F. M.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Mckenna, T. P.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Mikulyak, R.

D. Nelson and R. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688–3689 (1974).
[Crossref]

Minami, K.

R. Toda, K. Minami, and M. Esashi, “Thin-beam bulk micromachining based on RIE and xenon difluoride silicon etching,” Sens. Actuators, A 66(1-3), 268–272 (1998).
[Crossref]

Moore, J.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

Ndao, A.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Nelson, D.

D. Nelson and R. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688–3689 (1974).
[Crossref]

Ni, J.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

Ni, Y.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

Oliveri, S.

A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
[Crossref]

Ozdemir, S. K.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39(7), 1841–1844 (2014).
[Crossref]

Patel, R. N.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Pertsch, T.

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Qiao, L.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Ren, X.-F.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Rogers, S.

Rupp, R.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

Saeed, S.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

Sarabalis, C. J.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Saravi, S.

Schrempel, F.

Sergeyev, A.

Setzpfandt, F.

Shams-Ansari, A.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Shao, L.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Shen, B.

Sinclair, N.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Song, Q.

Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys., Mech. Astron. 62(7), 74231 (2019).
[Crossref]

Song, S.

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

Stark, P.

Stern, B.

Toda, R.

R. Toda, K. Minami, and M. Esashi, “Thin-beam bulk micromachining based on RIE and xenon difluoride silicon etching,” Sens. Actuators, A 66(1-3), 268–272 (1998).
[Crossref]

Tunnermann, A.

Ulliac, G.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Vahala, K.

Van Laer, R.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Venkataraman, V.

Wan, S.

Wang, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Wang, H.

Wang, J.

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref]

Wang, M.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Wang, P.

Wang, S.

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

Wang, W.

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

Wang, X.

Wang, Y.

Werner, C. S.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Witmer, J. D.

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

Wolf, R.

Wu, R.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

Xiong, X.

Xu, J.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref]

F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39(7), 1841–1844 (2014).
[Crossref]

Xu, Y.

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Yang, L.

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39(7), 1841–1844 (2014).
[Crossref]

Yang, Q.-F.

Yu, M.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Zappe, H.

Zhang, G.

W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
[Crossref]

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref]

F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang, “Inverted-wedge silica resonators for controlled and stable coupling,” Opt. Lett. 39(7), 1841–1844 (2014).
[Crossref]

Zhang, J.

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

Zhang, L.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Zhang, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Zheng, D.

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

Zheng, L.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Zheng, Y.

Zhu, B.

Zhu, R.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Adv. Mater. (1)

F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, “Lithium-niobate-silica hybrid whispering-gallery-mode resonators,” Adv. Mater. 27(48), 8075–8081 (2015).
[Crossref]

Adv. Mater. Interfaces (1)

A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, and P. Boulet, “Toward high-quality epitaxial LiNbO$_3$3 and LiTaO$_3$3 thin films for acoustic and optical applications,” Adv. Mater. Interfaces 4(8), 1600998 (2017).
[Crossref]

J. Appl. Phys. (1)

D. Nelson and R. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688–3689 (1974).
[Crossref]

Materials (2)

W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, and J. Xu, “P-type lithium niobate thin films fabricated by nitrogen-doping,” Materials 12(5), 819 (2019).
[Crossref]

W. Li, J. Cui, D. Zheng, W. Wang, S. Wang, S. Song, H. Liu, Y. Kong, and J. Xu, “Fabrication and characteristics of heavily Fe-doped LiNbO$_3$3/Si heterojunction,” Materials 12(17), 2659 (2019).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Nature (2)

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Opt. Express (9)

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25(1), 124–129 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

S. J. Herr, C. S. Werner, K. Buse, and I. Breunig, “Quasi-phase-matched self-pumped optical parametric oscillation in a micro-resonator,” Opt. Express 26(8), 10813–10819 (2018).
[Crossref]

W. Mao, W. Deng, F. Bo, F. Gao, G. Zhang, and J. Xu, “Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators,” Opt. Express 26(12), 15268–15275 (2018).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24(19), 21869–21879 (2016).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Optica (4)

Photonics Res. (1)

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photonics Res. 5(6), 623–628 (2017).
[Crossref]

Phys. Rev. Appl. (1)

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip LiNbO$_3$3 microresonator,” Phys. Rev. Appl. 6(1), 014002 (2016).
[Crossref]

Phys. Rev. Lett. (1)

J. Lin, Y. Ni, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122(17), 173903 (2019).
[Crossref]

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

Sci. China: Phys., Mech. Astron. (3)

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys., Mech. Astron. 58(11), 114209 (2015).
[Crossref]

Q. Song, “Emerging opportunities for ultra-high Q whispering gallery mode microcavities,” Sci. China: Phys., Mech. Astron. 62(7), 74231 (2019).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys., Mech. Astron. 61(11), 114211 (2018).
[Crossref]

Sens. Actuators, A (1)

R. Toda, K. Minami, and M. Esashi, “Thin-beam bulk micromachining based on RIE and xenon difluoride silicon etching,” Sens. Actuators, A 66(1-3), 268–272 (1998).
[Crossref]

Other (4)

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3P.1.

M. Eichenfield, “Reduced dimensionality lithium niobate microsystems,” (Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2017).

W. Jiang, R. N. Patel, F. M. Mayor, T. P. Mckenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. J. a. P. A. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” arXiv preprint arXiv:1903.00957 (2019).

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, and K. J. a. P. A. Lai, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” arXiv preprint arXiv:1907.08593 (2019).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the fabrication process of polycrystalline LN microdisks. The green, red and gray parts indicate LN, photoresist (PR) and Si, respectively. (1) Deposition of LN film on Si substrate by using pulsed laser deposition (PLD). (2) Ultra-violet lithography to make a PR pad. (3) PR developing. (4) Ar$^+$ plasma etching to remove unprotected LN film. (5) Wiping out residual PR by acetone. (6) XeF$_2$ dry etching to form a silicon pillar.
Fig. 2.
Fig. 2. Characterization of the deposited LN film on Si substrate. (a) Atomic force microscope image showing the surface roughness. (b) X-ray diffraction spectrum. (c) The piezo-electric force image of the LN film. (d) The relative phases of the optical axis of LN film along the yellow line in Fig. 2(c).
Fig. 3.
Fig. 3. Characterization of the polycrystalline LN microdisk on a silicon chip. (a) Optical microimage. (b, c) Scanning electron images showing the tilt and side views of the LN microdisk, respectively. (d) Transmission spectrum indicating a quality factor of 3.4$\times$10$^4$. (e) Broad-band transmission spectrum showing the free spectrum range.
Fig. 4.
Fig. 4. Second harmonic generation in fabricate polycrystalline LN microdisk resonators. (a) SHG signal with a pump at 1539.4 nm. (b) The dependence of SHG conversion efficiencies to pump power indicating a 2.1$\times$10$^{-10}$ mW$^{-1}$ normalized conversion efficiency.

Metrics