Abstract

Near-ultraviolet micro-LEDs with different diameters were fabricated on GaN substrates. The electroluminescence and the light output power–current density and current density–voltage relationships were measured. A saturated current density of 358 kA/cm2 was achieved with a 20 µm LED. The ideality factor curves showed steps and peaks when the injection current density was increased from 20 to 150 kA/cm2 and an abnormal efficiency increase. The transport and recombination processes of micro-LEDs at high injection current densities were simulated, and the many-body effect and phase space filling in the integrated quantum drift-diffusion model were considered. Serious current crowding was observed above 100 kA/cm2, even for the 20 µm LED.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Because of its advantages of a small size and high power density, the micro light-emitting diode (micro-LED) has received much attention in the fields of displays, visible light communication (VLC), bio-medicine, and so on [13]. Many researchers have reported that micro-LEDs can sustain a much higher current density than broad LEDs [1,37]. This characteristic has wide application potential for VLC, pumping sources of organic lasers, mask-free photolithography, cell manipulation, and so on [1,3,6,7]. For those applications, it is highly desirable that the micro-LEDs can deliver high output power. Huang et al. reported a tightly lateral oxide-confined scheme that achieved a record current density of 90 kA/cm2 with a 5 µm diameter micro-LED [4]. They attributed these superior results to the uniform current spreading and low junction temperature, which agrees well with other groups’ views [8,9]. In our previous work, we used cathodoluminescence (CL) and Kelvin probe force microscopy (KPFM) to evidence strain relaxation in a micro-LED [10,11]. The strain relaxation in multiple quantum wells (MQWs) abbreviates the quantum confined Stark effect (QCSE) and bandgap renormalization effect (BGRE), which allows the micro-LED to perform excellently with an ultrahigh injection current density [5,12].

A fully microscopic many-body model has been proposed to demonstrate the efficiency droop with increasing current density [13,14]. The Coulomb interaction affects the density-dependent bandgap renormalization (BGR). The dephasing of polarizations is because of electron–electron and electron–phonon scattering [13]. Some groups have observed BGR phenomena when the carrier concentration is greater than 1018 cm-3 [5,15,16]. BGR at a carrier concentration of 1020 cm-3 has also been reported [17]. In addition to BGR, phase-space filling (PSF), Auger recombination and carrier leakage/injection loss, and density-activated defect recombination (DADR) have also been evaluated at high current densities [13,14,16,18]. In those studies, the carrier concentration in the active layer of the LED ranged from 1018 to 1021 cm-3 at high injection current densities [5,16,17,1921]. This means that the transport and recombination processes are quite different. Because the carrier concentration cannot be measured directly in electrically driven LEDs, an accurate simulation should be carried out that considers the many-body effect with other effects.

In addition to micro-LEDs, LEDs on a GaN freestanding substrate can also sustain high injection current densities [20,2227]. The high injection performance has been attributed to the better thermal dissipation and low threading dislocation of the GaN substrate [2327]. Moreover, phonon mismatch and the thermal interface barrier can be avoided with the GaN substrate [27]. Mion et al. reported that the GaN substrate has a high thermal conductivity of 230 W∕mK when the threading dislocation density is less than 106 cm-2 [28]. Semipolar and nonpolar GaN substrates have been used to fabricate LEDs with an enhanced spontaneous emission rate (SER) [21,25,26]. SER enhancement can reduce the carrier concentration in the active layer, which abbreviates the effect of the efficiency droop at high injection current densities. Rashidi et al. fabricated micro-LEDs on a freestanding GaN substrate [24] and obtained an excellent electro-optical modulation performance for nonpolar micro-LEDs. However, their highest injection current density was about 3 kA/cm2, which is less than that of conventional polar micro-LEDs on sapphire substrates. They also did not discuss recombination processes.

In this work, near-ultraviolet micro-LEDs with different diameters were fabricated on a freestanding GaN substrate. The electroluminescence (EL), light output power (LOP) vs current (L–I) curves, and current-voltage (I–V) curves were measured. The highest saturated injection current density of 358 kA/cm2 was achieved with a 20 µm LED on a GaN substrate. The APSYS package from Crosslight was used to calculate the electron concentration and current distribution considering the many-body effect. The transport and recombination mechanisms at extremely high injection current densities were examined.

2. Experiment

The InGaN/GaN MQW LEDs were grown on GaN and sapphire substrates by metal organic chemical vapor deposition (MOCVD) under the same conditions. The epitaxial structure consisted of undoped GaN, Si-doped n-GaN, and nine periods of GaN/InGaN MQW layers, where the In composition was controlled by the growth temperature of InGaN layer. The Mg-doped AlGaN electron-blocking layer (EBL) and Mg-doped p-GaN were capped on the MQWs. The doping concentrations of n-GaN and p-GaN were 5 × 1018 and 8 × 1019 cm−3 respectively. Conventional photolithography and inductively coupled plasma (ICP) etching technology were used to obtain micron-sized pillars with diameters of 10–160 µm. The samples were named after their substrates and pillar sizes. For example, “fs-20 µm” and “ref-20 µm” refer to 20 µm LEDs fabricated on the GaN substrate and sapphire substrate, respectively. KOH solution was applied to repair etching damage on the sidewalls of the micro-LEDs. Figure 1 shows optical microscopy images and the schematic of the micro-LEDs on the GaN substrate.

 

Fig. 1. (a) Optical microscopy images of the micro-LED array (the relative positions of the p-pad and n-pad are illustrated in the top-right corner). (b) Schematic diagram of the LED cross-sectional structure. (c) EL spectrum measured under 2.8 kA/cm2 for fs-20 μm LED.

Download Full Size | PPT Slide | PDF

I–V measurements were carried out in direct current (DC) with an Agilent 4155 C semiconductor parameter analyzer and in pulsed current with an Aigtek ATA 4014 high-voltage power amplifier and DG 5072 function/arbitrary waveform generator. The LOP was measured with a calibrated Si photodetector, while EL spectra were collected with a SSP 6612 LED Multiple Parameters Tester with a coupled spectrometer and charge coupled device (CCD) detection system in an integrated sphere. The pulsed current was gradually applied to the micro-LEDs at current densities of 0–360 kA/cm2. The pulse width was 1 µs, and the duty cycle was 10–0.01%. The typical EL spectrum at the current density of 2.8 kA/cm2 for fs-20 µm LED was shown in Fig. 1(c). The peak wavelength (λpeak) and the full width at half maximum (FWHM) were 385.0 and 10.1 nm. The λpeak experienced a “W” route of blue shift, red shift, bule shift and red shift from 2.8 to 358 kA/cm2. The FWHM broadened monotonously from 10.1 to 21.7 nm in this region (not shown here). The carrier concentration and current distribution of the micro-LEDs were simulated with the APSYS package of Crosslight [29]; the many-body effect, current spreading, strain relaxation, and thermal effect were considered.

3. Results and discussion

Figure 2 shows the L–J curves and voltages at 28 kA/cm2 for micro-LEDs with different substrates and pillar sizes. The saturated current density jsat of fs-20 µm reached as high as 358 kA/cm2, which is the highest value reported for micro-LEDs. Here the saturated current density referred to the current density when the light output power saturated. Figure 2(a) shows that the micro-LEDs with a GaN substrate and smaller pillar sizes had higher jsat values. In contrast to our previous work [5], the pulsed power had a smaller pulse width of 1 µs and lower filling factor of 0.01%, which suppressed the thermal effect. The short emission wavelength and GaN substrate may be other factors that resulted in these high values [23]. The GaN substrate contributed a 50% increment in the maximum current density, as shown in Fig. 2(a). The jsat value of ref-20 µm LED was 211 kA/cm2, which is a 20-fold increase in comparison with previous data on an LED with the same size on a sapphire substrate [5]. Figure 2(b) shows that all micro-LEDs on the GaN substrate had lower voltages than those on the sapphire substrate at 28 kA/cm2. The voltage was found to increase with the pillar diameter. The piezoelectric polarization field increased the voltage in the strained InGaN/GaN QWs [30,31]. Strain relaxation occurred in the InGaN/GaN QWs with a decreasing pillar size [10,11] or when a GaN substrate was used [32]. The GaN substrate had a lower series resistance than the sapphire substrate because the former is conductive. All of these factors led to a lower forward bias at a high injection current density.

 

Fig. 2. (a) Normalized light output power (LOP) vs. current density. (b) Voltage at 28 kA/cm2 for micro-LEDs with different pillar diameters and different substrates.

Download Full Size | PPT Slide | PDF

The high jsat and low forward bias are both very significant for high injection current applications [1,3,6,7]. First, the possibility of current leakage due to defects should be ruled out. Figure 3(a) shows the J–V curves for the fs-20 µm LED in both linear and logarithmic scales. The J–V characteristics were measured with DC and pulsed current, respectively. The turn-on voltage was about 2.8 V at 1 µA. The reversal leakage current was 1.9 nA at -5 V, which corresponds to 0.5 µA at -5 V for 300 µm broad LEDs. This means the current leakage was rather low for the fs-20 µm LED. The high current density was not due to a parallel path for a leakage current from defects. The current density was measured as 358 kA/cm2 for the fs-20 µm LED at a forward bias of 7.90 V under pulsed current, while it was saturated at 30 kA/cm2 with 4.62 V under the DC condition. Below 3 V, the I–V curves nearly overlapped completely for the DC and pulsed current conditions. Above 3 V, the curves gradually separated as the current density increased. According to the carrier Boltzmann distribution and lower series resistance at a higher junction temperature, the current density should be higher in the DC case because there was more self-heating power [23]. However, Fig. 3(a) shows contrary results. An emission redshift was often observed for LEDs when the junction temperature increased. In addition to bandgap shrinking, the increasing strain was another important reason because the InGaN QWs were nearly fully strained. The increased strain in the InGaN QWs meant additional voltage at a certain current [30,31]. Although the lower series resistance and bandgap shrinking related to self-heating can reduce the voltage, the strain induced voltage may play the dominant role in the voltage change.

 

Fig. 3. (a) J–V characteristics of the fs-20 µm LED. The red dotted line represents J–V under DC, and the blue dotted line represents J–V under a pulsed current. Ideality factor β of the fs-20 µm LED at current injection densities of (b) 10−5–103 A/cm2 and (c) 103–3.58 × 105 A/cm2.

Download Full Size | PPT Slide | PDF

For the forward bias, the I–V semi-logarithmic curves can be divided into four regions. Region I corresponded to low current densities from 10−5 to 10−3 A/cm2. The emission was weak because the carriers tunneled into the QWs through the defects in the active layer. Region II corresponded to moderate current densities from 10−3 to 1 A/cm2, and the forward bias was below the turn-on voltage of 2.8 V. The Shockley–Read–Hall (SRH) recombination was dominant, and bimolecular radiative recombination started to play the role in the light emissions. Region III corresponded to moderately high current densities from 1 to 103 A/cm2. The bimolecular radiative recombination dominated the light emission. Region IV corresponded to high current densities from 103 to 3.53 × 105 A/cm2. Some special transport and recombination processes occurred in this high injection current region, such as carrier leakage [4], Auger recombination [14], and polarization dephasing [13]. Much attention has been paid to the performance at the high injection current densities of Region IV. However, few works have reported on the performance at current densities above 20 kA/cm2 [4,5].

The ideality factor β and series resistance Rs can be derived from the measured J–V data shown in Fig. 3(a) according to the Shockley diode equation [4],

$$\frac{{\textrm{dV}}}{{\textrm{dJ}}} = Rs \bullet A + \frac{{\beta {k_b}T}}{e}\frac{1}{J}$$
where A is the mesa surface area, ${k_b}$ is the Boltzmann constant, T is temperature and e is the electron charge. The fitting values of β and Rs are correlative to each other. Here β is chosen for qualitatively analysis on the transport and recombination process in micro-LEDs. Figures 3(b) and 3(c) show the β curves dependent on the current density for different regions measured under DC and pulsed current conditions. Region IV was further divided into Sub-regions IV-1, IV-2, and IV-3, as shown in Fig. 3(c). Similar β curves were observed in Regions I, II, and III with DC and pulsed current because the low current density caused small thermal effects. An obvious difference was observed in Region IV because of the thermal effect. In Region I, most β values were greater than 3, and the peak value was 18 at a current density of 1.3 × 10−4 A/cm2. The initial tunneling current led to the high β values [4]. Near Region II, the carrier diffusion and recombination caused β to decrease. In the very beginning of Region I, β was less than 2, which may have been due to the hopping transport via the defect state in the active region [33]. In Regions II and III, β gradually decreased from 3 to 1.4 and then quickly returned to 3. In the front decreasing part, the SRH and bimolecular recombination dominated in sequence, which corresponded to the β values of 2 and 1, respectively [34]. In the back increasing part, carrier leakage and current crowding caused β to increase above 2 [35,36]. In Region IV, the β curve showed a slow increase (IV-1) from 103 to 104 A/cm2, a rapid increase with steps (IV-2) from 104 to 1.5 × 105 A/cm2, and another more rapid increase (IV-3) from 1.5 × 105 A/cm2 to 3.58 × 105 A/cm2. In Sub-region IV-1, the flat β curve indicates that the carrier leakage and current crowding were not serious. In Sub-region IV-2, the rapid increase in β indicates more carrier leakage and/or current crowding than in Sub-region IV-1. The steps and peaks of Sub-region IV-2 indicate that some contrary processes may have occurred to reduce β. β often decreases when the forward bias and external quantum efficiency (EQE) are improved [3638]. It can be deduced that the many-body effect appears to play a role in these regions, where the single electron approximation is invalid. In Sub-region IV-3, carrier leakage and/or current crowding became more serious again. The current crowding was considered in the APSYS simulation. Thus, β increased monotonically in this sub-region. The current density tended to become saturated because more self-heating occurred. The effects of size and substrate on the ideality factor were calculated and simulated too (not shown here). The characteristics of the β curves showed similar tendencies to those for fs-20 µm LED. However, because the status of strain relaxation and thermal dissipation of micro-LEDs were not same for different size or substrate, the current density regions need to be divided again for different transport and recombination processes. It was found that larger size micro-LEDs had higher ideality factor. The fs-samples always showed lower ideality factor than the ref-samples.

Because the electrical characteristics in Region IV showed unique behavior compared to previous results with a high injection current density, the light emission in this region was investigated further. According to the L–I curves shown in Fig. 2(a), the EQE and dlog(L)/dlog(I) were calculated in Region IV for the fs-20 µm LED, as shown in Figs. 4(a) and 4(b), respectively. To observe the EQE peak, the current density was extended to Region III. The peak current density of the EQE maximum was 695 A/cm2, which is similar to the results for the 10 µm LED [4]. In Sub-region IV-1, the efficiency droop was about 70%. In Sub-region IV-2, the droop became slow, and the efficiency even increased at the end of the sub-region. In Sub-region IV-3, the efficiency continued to increase to an extreme point and then drooped again. It is surprising that the EQE increased when the current density was above 100 kA/cm2. Figure 4(b) showed the slope of the log–log L–I curves  vs. current density in the region IV. The β curve was also plotted for comparison in Fig. 4(b). The slope of the log–log L–I curves gave information on the domination recombination mechanism at different injection current densities [39,40]. Here the ABC model and injection efficiency were considered to explain the slope curve like those in Ref. [4]. The slope of 1 corresponded to dominant bimolecular recombination. The slope of 2 corresponded to dominant nonradiative recombination through defects. The slope of below 1 corresponded to dominant carrier leakage or Auger recombination [4]. The slope stayed constant at 0.70 at the beginning of Sub-region IV-1. Accordingly, the ideality factor β increased very slowly. However, the EQE decreased rapidly. EQE is proportional to the ratio of L/I. This means that the injection current proportion for radiative recombination decreased rapidly in Sub-region IV-1. Auger recombination is an important cause of EQE droop. The slope was calculated as 0.67 [4] when Auger recombination was dominant at the beginning of Sub-region IV-1. However, according to differential carrier lifetime analysis [41], the carrier leakage was more significant for EQE droop at a high injection current density. The slope decreased from 0.70 to 0.43 when the current density was increased from 3.5 to 20 kA/cm2. Some high-order terms produced from carrier leakage led to a small slope for the log-log L–I curves. Correspondingly, the β showed a significantly increases. It meant that the injection efficiency decreased, which was shown in the rate equation in Ref. [4]. From 20 to 150 kA/cm2 in Sub-region IV-2, the slope increased from 0.43 to 1.26. There may be some processes for reducing the high-order terms of the leakage. Radiative recombination can be enhanced when phase-space filling occurs at a certain energy band that is renormalized for direct carrier transitions in the many-body interaction [13,14]. The abnormal efficiency increases in Fig. 4(a) and the steps and peaks of β curve in Fig. 4(b) are explained well by these results. However, with the large leakage background, it was difficult for the slopes of the log–log L–I curves to exceed 1. Thus, nonradiative recombination through the defects was considered. Density-activated defect recombination (DADR) occurs at high injection current densities [18]. The activated defects may have increased the slope above 1. In Sub-region IV-3 from 150 to 358 kA/cm2, the slope decreased monotonously from 1.26 to 0.47. Combined with the EQE and β results, when the PSF passed the high-efficiency space and activated defects gradually became saturated, the slope returned to a small value below 0.5.

 

Fig. 4. (a) Normalized external quantum efficiency (EQE) and EL intensity of the fs-20 µm LED vs. current injection density. (b) Slope of the log–log L–I curves and ideality factor β of the fs-20 µm LED vs. current injection density.

Download Full Size | PPT Slide | PDF

In the APSYS simulation, we built up the LED structure according to the practical micro-LED. We used the default material parameters in the software, which were reported by Joachim Piprik [42,43]. Based on the circular symmetry of micro-LED, it is just required to simulate half part of the fs-20 µm LED. As shown in Fig. 5(a), widths of LED pillar, P-pad and N-pad are 10, 10 and 100 µm respectively. Much wider N-pad has no further effect on the current injection densities. We also included the many-body model throughout our calculations. The carrier concentration increased from 1.7 × 1018 to 1.9 × 1019 cm-3 when the current density was increased from 1 A/cm2 to 358 kA/cm2. As shown in Fig. 5(b), an increase of one order of magnitude for the carrier concentration seems too small compared with a change of five orders of magnitude for the current density. This may have been due to the strain relaxation of the small micro-LED on the GaN substrate. The carriers could not accumulate to a high concentration in the InGaN QWs because the electron–hole wave functions overlapped more [5]. Moreover, the BGR effect increased with the biaxial compressive strain, which may have reduced the carrier recombination rate in the QWs [44,45]. The carrier concentration increased only 1.5 times when the current density was increased by about three orders of magnitude. This indicates that the carrier recombination rate was proportional to the injected carrier density at low and moderate levels. At high injection current densities, although the leakage became more serious, more energy levels were filled, and the different kinds of recombination became saturated. Thus, the carrier concentration increased by one order of magnitude when the current density was increased by only two orders of magnitude.

 

Fig. 5. (a) Structure of fs-20 µm LED used in the APSYS simulation. (b) Dependence of the electron concentration on the average current density for the fs-20 µm LED. The inset shows the simulation results for the J–V and L–J curves of the fs-20 µm LED. (c) Simulated current density distributions along the diameter of the pillar neighboring the last QW of the fs-20 µm LED with four different average current densities: 1, 10, 100, and 400 kA/cm2.

Download Full Size | PPT Slide | PDF

Figure 5(c) shows the simulated current density distributions on top of the pillar along the diameter with different average current densities of 1, 10, 100, and 400 kA/cm2. From the center to the edge of the pillar, the current density increased monotonically. The ratios of the current density at the edge of the pillar to the average density were 1.12, 1.61, 2.17, and 2.63, respectively. The current crowding at the edge was very serious when the current density was greater than 100 kA/cm2. When the average current density is 400 kA/cm2, the maximum and minimum densities were 1050 and 130 kA/cm2, respectively. Similar to our previous results, the current crowding was not significant when the current density was less than 10 kA/cm2 for the 20 µm micro-LEDs [5]. It was also found that current spreading become more uniform with the size decreasing, similar to that in Ref. [5]. The uniformity was also improved for same sizes of micro-LEDs when the sapphire substrate was replaced by freestanding GaN substrate. The current crowding induced an efficiency droop [46], and the ideality factor increased [36]. Moreover, the EL spectra would be broadened by the current crowding [5]. The broadened spectra are related to many issues of recombination besides the current distribution. Although the transport and recombination processes were explained by the L–J and J–V measurements and APSYS simulations in most injection current density regions, the recombination processes in Sub-regions IV-2 and IV-3 need to be further investigated. The detailed EL spectra and APSYS simulation combining the many-body effect with other effects of concern should be considered.

4. Conclusions

In summary, we fabricated micro-LEDs of different sizes using bulk GaN substrate and sapphire for comparison. A saturated current density of 358 kA/cm2 was achieved with a 20 µm LED on a bulk GaN substrate. The J–V and L–J results showed that a small pillar size combined with the GaN substrate resulted in a high performance level at high injection current densities. At 10–150 kA/cm2, some steps and peaks in the ideality factor curve and an abnormal efficiency increase were observed. The large background carrier leakage, phase space filling, and many-body effect may have caused those abnormalities. APSYS simulation showed a relatively low carrier density at moderate injection current densities and a rapid increase in the carrier density at high injection current densities. According to the simulation results, the current crowding was serious when the average current density was above 100 kA/cm2. Realizing an extremely high injection current density for micro-LEDs on GaN substrate is beneficial for the multiplexing of solid-state lighting and VLC.

Funding

National Key Research and Development Program (2017YFB0403601); Science and Technology Major Project of Guangdong Province (2016B010111001); Science and Technology Planning Project of Henan Province (161100210200); National Natural Science Foundation of China (NSFC) (61334009, 61674005); Beijing Municipal Science and Technology Commission (Z161100001616010).

References

1. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016). [CrossRef]  

2. Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “III-Nitride micro-emitter arrays: Development and applications,” J. Phys. D: Appl. Phys. 41(9), 094001 (2008). [CrossRef]  

3. A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Opt. Express 22(2), 1372–1380 (2014). [CrossRef]  

4. S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017). [CrossRef]  

5. Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015). [CrossRef]  

6. I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3(10), 546–549 (2009). [CrossRef]  

7. J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013). [CrossRef]  

8. P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012). [CrossRef]  

9. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010). [CrossRef]  

10. E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012). [CrossRef]  

11. J. L. Zhan, Z. Z. Chen, Q. Q. Jiao, Y. L. Feng, C. C. Li, Y. F. Chen, Y. Y. Chen, F. Jiao, X. N. Kang, S. F. Li, Q. Wang, T. J. Yu, G. Y. Zhang, and B. Shen, “Investigation on strain relaxation distribution in GaN-based µLEDs by Kelvin probe force microscopy and micro-photoluminescence,” Opt. Express 26(5), 5265–5274 (2018). [CrossRef]  

12. L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001). [CrossRef]  

13. J. Hader, J. V. Moloney, and S. W. Koch, “Investigation of droop-causing mechanisms in GaN-based devices using fully microscopic many-body theory,” in Gallium Nitride Materials and Devices VIII, Y. N. Jen-Inn Chyi, H. Morkoç, J. Piprek, E. Yoon, and H. Fujioka, eds. (International Society for Optics and Photonics, 2013).

14. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008). [CrossRef]  

15. F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999). [CrossRef]  

16. F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015). [CrossRef]  

17. M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014). [CrossRef]  

18. J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011). [CrossRef]  

19. W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016). [CrossRef]  

20. Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016). [CrossRef]  

21. S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, “Internal quantum efficiency and carrier dynamics in semipolar (20(2(1) InGaN/GaN light-emitting diodes,” Opt. Express 25(3), 2178–2186 (2017). [CrossRef]  

22. A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017). [CrossRef]  

23. A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016). [CrossRef]  

24. A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017). [CrossRef]  

25. T. Yokogawa and A. Inoue, “Extremely high current density over 1000 A/cm2 operation in M-GaN LEDs on bulk GaN substrates with low-efficiency droop,” in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII, H. J. Klaus, P. Streubel, Li-Wei Tu, and Martin Strassburg, eds. (International Society for Optics and Photonics, 2014).

26. M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017). [CrossRef]  

27. J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010). [CrossRef]  

28. C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006). [CrossRef]  

29. APSYS, (2017 version) by Crosslight Software, Inc., Burnaby, Canada, http://www.crosslight.com

30. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006), p. 83.

31. D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015). [CrossRef]  

32. J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014). [CrossRef]  

33. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015). [CrossRef]  

34. S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).

35. K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004). [CrossRef]  

36. V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010). [CrossRef]  

37. J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009). [CrossRef]  

38. D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009). [CrossRef]  

39. M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008). [CrossRef]  

40. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002). [CrossRef]  

41. X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016). [CrossRef]  

42. J. Piprek, P. Abraham, and J. E. Bowers, “Efficiency Analysis of Quantum Well Lasers using PICS3D,” Integrated Photonics Research, 115–117 (1999).

43. J. Piprek, E. S. Bjorlin, and J. E. Bowers, “Modeling and optimization of vertical-cavity semiconductor laser amplifiers,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa, P. Blood, and M. Osinsk, eds. (International Society for Optics and Photonics, 2001).

44. M. R. Kim, C. H. Kim, and B. H. Han, “Band-gap renormalization and strain effects in semiconductor quantum wells,” Phys. B 245(1), 45–51 (1998). [CrossRef]  

45. K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013). [CrossRef]  

46. H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express 19(4), 2886–2894 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
    [Crossref]
  2. Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “III-Nitride micro-emitter arrays: Development and applications,” J. Phys. D: Appl. Phys. 41(9), 094001 (2008).
    [Crossref]
  3. A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Opt. Express 22(2), 1372–1380 (2014).
    [Crossref]
  4. S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
    [Crossref]
  5. Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
    [Crossref]
  6. I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3(10), 546–549 (2009).
    [Crossref]
  7. J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
    [Crossref]
  8. P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
    [Crossref]
  9. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
    [Crossref]
  10. E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
    [Crossref]
  11. J. L. Zhan, Z. Z. Chen, Q. Q. Jiao, Y. L. Feng, C. C. Li, Y. F. Chen, Y. Y. Chen, F. Jiao, X. N. Kang, S. F. Li, Q. Wang, T. J. Yu, G. Y. Zhang, and B. Shen, “Investigation on strain relaxation distribution in GaN-based µLEDs by Kelvin probe force microscopy and micro-photoluminescence,” Opt. Express 26(5), 5265–5274 (2018).
    [Crossref]
  12. L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001).
    [Crossref]
  13. J. Hader, J. V. Moloney, and S. W. Koch, “Investigation of droop-causing mechanisms in GaN-based devices using fully microscopic many-body theory,” in Gallium Nitride Materials and Devices VIII, Y. N. Jen-Inn Chyi, H. Morkoç, J. Piprek, E. Yoon, and H. Fujioka, eds. (International Society for Optics and Photonics, 2013).
  14. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
    [Crossref]
  15. F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
    [Crossref]
  16. F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
    [Crossref]
  17. M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
    [Crossref]
  18. J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
    [Crossref]
  19. W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
    [Crossref]
  20. Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016).
    [Crossref]
  21. S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, “Internal quantum efficiency and carrier dynamics in semipolar (20(2(1) InGaN/GaN light-emitting diodes,” Opt. Express 25(3), 2178–2186 (2017).
    [Crossref]
  22. A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017).
    [Crossref]
  23. A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016).
    [Crossref]
  24. A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
    [Crossref]
  25. T. Yokogawa and A. Inoue, “Extremely high current density over 1000 A/cm2 operation in M-GaN LEDs on bulk GaN substrates with low-efficiency droop,” in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII, H. J. Klaus, P. Streubel, Li-Wei Tu, and Martin Strassburg, eds. (International Society for Optics and Photonics, 2014).
  26. M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$2¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017).
    [Crossref]
  27. J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
    [Crossref]
  28. C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006).
    [Crossref]
  29. APSYS, (2017 version) by Crosslight Software, Inc., Burnaby, Canada, http://www.crosslight.com
  30. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006), p. 83.
  31. D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015).
    [Crossref]
  32. J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
    [Crossref]
  33. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
    [Crossref]
  34. S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).
  35. K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
    [Crossref]
  36. V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
    [Crossref]
  37. J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
    [Crossref]
  38. D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
    [Crossref]
  39. M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008).
    [Crossref]
  40. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
    [Crossref]
  41. X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
    [Crossref]
  42. J. Piprek, P. Abraham, and J. E. Bowers, “Efficiency Analysis of Quantum Well Lasers using PICS3D,” Integrated Photonics Research, 115–117 (1999).
  43. J. Piprek, E. S. Bjorlin, and J. E. Bowers, “Modeling and optimization of vertical-cavity semiconductor laser amplifiers,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa, P. Blood, and M. Osinsk, eds. (International Society for Optics and Photonics, 2001).
  44. M. R. Kim, C. H. Kim, and B. H. Han, “Band-gap renormalization and strain effects in semiconductor quantum wells,” Phys. B 245(1), 45–51 (1998).
    [Crossref]
  45. K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
    [Crossref]
  46. H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express 19(4), 2886–2894 (2011).
    [Crossref]

2018 (1)

2017 (5)

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$2¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017).
[Crossref]

S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, “Internal quantum efficiency and carrier dynamics in semipolar (20(2(1) InGaN/GaN light-emitting diodes,” Opt. Express 25(3), 2178–2186 (2017).
[Crossref]

A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017).
[Crossref]

2016 (5)

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016).
[Crossref]

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016).
[Crossref]

2015 (4)

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015).
[Crossref]

2014 (3)

J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
[Crossref]

A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Opt. Express 22(2), 1372–1380 (2014).
[Crossref]

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

2013 (2)

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

2012 (2)

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

2011 (2)

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express 19(4), 2886–2894 (2011).
[Crossref]

2010 (3)

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[Crossref]

2009 (3)

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3(10), 546–549 (2009).
[Crossref]

2008 (3)

Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “III-Nitride micro-emitter arrays: Development and applications,” J. Phys. D: Appl. Phys. 41(9), 094001 (2008).
[Crossref]

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008).
[Crossref]

2006 (1)

C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006).
[Crossref]

2004 (1)

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

2002 (1)

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

2001 (1)

L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001).
[Crossref]

1999 (1)

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[Crossref]

1998 (1)

M. R. Kim, C. H. Kim, and B. H. Han, “Band-gap renormalization and strain effects in semiconductor quantum wells,” Phys. B 245(1), 45–51 (1998).
[Crossref]

Abraham, P.

J. Piprek, P. Abraham, and J. E. Bowers, “Efficiency Analysis of Quantum Well Lasers using PICS3D,” Integrated Photonics Research, 115–117 (1999).

Aleksiejunas, R.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Aragon, A.

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$2¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017).
[Crossref]

Ayoub, F.

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

Binet, F.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[Crossref]

Bjorlin, E. S.

J. Piprek, E. S. Bjorlin, and J. E. Bowers, “Modeling and optimization of vertical-cavity semiconductor laser amplifiers,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa, P. Blood, and M. Osinsk, eds. (International Society for Optics and Photonics, 2001).

Bochkareva, N. I.

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Bolgov, S. S.

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[Crossref]

Bowers, J. E.

J. Piprek, E. S. Bjorlin, and J. E. Bowers, “Modeling and optimization of vertical-cavity semiconductor laser amplifiers,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa, P. Blood, and M. Osinsk, eds. (International Society for Optics and Photonics, 2001).

J. Piprek, P. Abraham, and J. E. Bowers, “Efficiency Analysis of Quantum Well Lasers using PICS3D,” Integrated Photonics Research, 115–117 (1999).

Brener, I.

Browne, D. A.

D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015).
[Crossref]

Butté, R.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

Cao, X. A.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

Chatterjee, A.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Chen, H.

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

Chen, Y.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Chen, Y. F.

Chen, Y. J.

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Chen, Y. Y.

Chen, Z. Z.

J. L. Zhan, Z. Z. Chen, Q. Q. Jiao, Y. L. Feng, C. C. Li, Y. F. Chen, Y. Y. Chen, F. Jiao, X. N. Kang, S. F. Li, Q. Wang, T. J. Yu, G. Y. Zhang, and B. Shen, “Investigation on strain relaxation distribution in GaN-based µLEDs by Kelvin probe force microscopy and micro-photoluminescence,” Opt. Express 26(5), 5265–5274 (2018).
[Crossref]

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Cho, Y. H.

Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016).
[Crossref]

Chun, H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Chung, H. J.

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Craven, M. D.

A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017).
[Crossref]

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016).
[Crossref]

Crawford, M. H.

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

Dai, L.

L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001).
[Crossref]

Darvish, S.

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

DaVico, K.

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

David, A.

A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017).
[Crossref]

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016).
[Crossref]

Dawson, M. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Opt. Express 22(2), 1372–1380 (2014).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

DenBaars, S. P.

Detchprohm, T.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Deveaud, B.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

Duboz, J. Y.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[Crossref]

Dussaigne, A.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

Edwards, P. R.

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Esser, N.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Fan, Z. Y.

Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “III-Nitride micro-emitter arrays: Development and applications,” J. Phys. D: Appl. Phys. 41(9), 094001 (2008).
[Crossref]

Faulkner, G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Feezell, D.

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$2¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017).
[Crossref]

Feezell, D. F.

Feneberg, M.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Feng, Y. L.

Ferreira, R. X. G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Fu, X. X.

J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
[Crossref]

Garke, B.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Giesen, C.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Goldhahn, R.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Gong, Z.

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Grandjean, N.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

Gu, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Opt. Express 22(2), 1372–1380 (2014).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Gu, E. D.

Guilhabert, B.

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Hader, J.

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Investigation of droop-causing mechanisms in GaN-based devices using fully microscopic many-body theory,” in Gallium Nitride Materials and Devices VIII, Y. N. Jen-Inn Chyi, H. Morkoç, J. Piprek, E. Yoon, and H. Fujioka, eds. (International Society for Optics and Photonics, 2013).

Han, B. H.

M. R. Kim, C. H. Kim, and B. H. Han, “Band-gap renormalization and strain effects in semiconductor quantum wells,” Phys. B 245(1), 45–51 (1998).
[Crossref]

Han, Y.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Hanser, D.

C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006).
[Crossref]

Hao, Z.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Henderson, R. K.

Herrnsdorf, J.

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

Huang, S. C.

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

Hurni, C. A.

A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017).
[Crossref]

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016).
[Crossref]

Ikeda, M.

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Inoue, A.

T. Yokogawa and A. Inoue, “Extremely high current density over 1000 A/cm2 operation in M-GaN LEDs on bulk GaN substrates with low-efficiency droop,” in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII, H. J. Klaus, P. Streubel, Li-Wei Tu, and Martin Strassburg, eds. (International Society for Optics and Photonics, 2014).

Ivanov, A. M.

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Jacopin, G.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

Jarašiunas, K.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Jeorrett, A. H.

Jiang, H. X.

Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “III-Nitride micro-emitter arrays: Development and applications,” J. Phys. D: Appl. Phys. 41(9), 094001 (2008).
[Crossref]

L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001).
[Crossref]

Jiang, S.

Jiang, X. Z.

J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
[Crossref]

Jiao, F.

Jiao, Q. Q.

Jin, S.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Kang, X. N.

Kelly, A. E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Kim, C. H.

M. R. Kim, C. H. Kim, and B. H. Han, “Band-gap renormalization and strain effects in semiconductor quantum wells,” Phys. B 245(1), 45–51 (1998).
[Crossref]

Kim, J. K.

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Kim, M. H.

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Kim, M. R.

M. R. Kim, C. H. Kim, and B. H. Han, “Band-gap renormalization and strain effects in semiconductor quantum wells,” Phys. B 245(1), 45–51 (1998).
[Crossref]

Klochkov, A. V.

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Koch, S. W.

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Investigation of droop-causing mechanisms in GaN-based devices using fully microscopic many-body theory,” in Gallium Nitride Materials and Devices VIII, Y. N. Jen-Inn Chyi, H. Morkoç, J. Piprek, E. Yoon, and H. Fujioka, eds. (International Society for Optics and Photonics, 2013).

Kogotkov, V. S.

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Koleske, D. D.

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

Kretchmer, J.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

Kung, P.

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

Lange, K.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Laurand, N.

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

LeBoeuf, S. F.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

Li, C. C.

Li, H.

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Li, J. Z.

Li, S. F.

Li, X.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Li, Y.

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Lidig, C.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Lin, J. Y.

Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “III-Nitride micro-emitter arrays: Development and applications,” J. Phys. D: Appl. Phys. 41(9), 094001 (2008).
[Crossref]

L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001).
[Crossref]

Linder, N.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

Liu, J.

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Liu, N. Y.

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Liu, S.

Liu, W.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

Liu, Z.

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Lu, T. C.

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

Luo, Y.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Lutgen, S.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

Ma, J.

Malyutenko, V. K.

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[Crossref]

Martin, R. W.

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Massoubre, D.

A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Opt. Express 22(2), 1372–1380 (2014).
[Crossref]

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Mathieson, K.

Mayes, K.

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

Mazumder, B.

D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015).
[Crossref]

McClintock, R.

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

McKendry, J.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

McKendry, J. J. D.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Meneghesso, G.

M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008).
[Crossref]

Meneghini, M.

M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008).
[Crossref]

Meng, X.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Miasojedovas, S.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Millington, O.

Mion, C.

C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006).
[Crossref]

Mishkat-Ul-Masabih, S.

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

Moloney, J. V.

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Investigation of droop-causing mechanisms in GaN-based devices using fully microscopic many-body theory,” in Gallium Nitride Materials and Devices VIII, Y. N. Jen-Inn Chyi, H. Morkoç, J. Piprek, E. Yoon, and H. Fujioka, eds. (International Society for Optics and Photonics, 2013).

Monavarian, M.

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$2¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017).
[Crossref]

Morkoç, H.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Muth, J. F.

C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006).
[Crossref]

Na, J. H.

Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016).
[Crossref]

Namdas, E. B.

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3(10), 546–549 (2009).
[Crossref]

Nami, M.

Nargelas, S.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Neale, S. L.

Netzel, C.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Neumann, M. D.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).

Noemaun, A. N.

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

O’Brien, D. C.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Off, J.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[Crossref]

Oh, S. H.

Okur, S.

S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, “Internal quantum efficiency and carrier dynamics in semipolar (20(2(1) InGaN/GaN light-emitting diodes,” Opt. Express 25(3), 2178–2186 (2017).
[Crossref]

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Osterburg, S.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Özgür, Ü.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Pasenow, B.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

Penty, R. V.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Piprek, J.

J. Piprek, E. S. Bjorlin, and J. E. Bowers, “Modeling and optimization of vertical-cavity semiconductor laser amplifiers,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa, P. Blood, and M. Osinsk, eds. (International Society for Optics and Photonics, 2001).

J. Piprek, P. Abraham, and J. E. Bowers, “Efficiency Analysis of Quantum Well Lasers using PICS3D,” Integrated Photonics Research, 115–117 (1999).

Plawsky, J.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Podoltsev, A. D.

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[Crossref]

Preble, E. A.

C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006).
[Crossref]

Rajbhandari, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Rashidi, A.

M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$2¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017).
[Crossref]

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

Razeghi, M.

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

Rebane, Y. T.

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Richter, E.

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

Rishinaramangalam, A.

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

Rishinaramangalam, A. K.

Ryu, H. Y.

Sabathil, M.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

Samuel, I. D. W.

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3(10), 546–549 (2009).
[Crossref]

Sandvik, P. M.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

Scholz, F.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[Crossref]

Schubert, E. F.

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006), p. 83.

Schubert, M. F.

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Senawiratne, J.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Shen, B.

Shiell, D.

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

Shim, J. I.

Shreter, Y. G.

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Son, S. J.

Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016).
[Crossref]

Sone, C.

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Speck, J. S.

D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015).
[Crossref]

Stokes, E. B.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

Sun, C.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).

Tao, Y. B.

J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Tian, P. F.

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

Trevisanello, L. R.

M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008).
[Crossref]

Tsiminis, G.

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

Tuna, Ö.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Turnbull, G. A.

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3(10), 546–549 (2009).
[Crossref]

Vengris, M.

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

Virko, M. V.

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Walker, D.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

Wang, J.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Wang, L.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Wang, Q.

Wang, S. C.

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

Wang, S. F.

Wang, S. Y.

Wang, Y.

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

Watson, I. M.

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

Watson, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Wetzel, C.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

White, I. H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Wu, Y. R.

D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015).
[Crossref]

Xia, Y.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Xie, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Xie, E. Y.

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Xiong, B.

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Xu, J.

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Yang, H.

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Yasan, A.

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

Yokogawa, T.

T. Yokogawa and A. Inoue, “Extremely high current density over 1000 A/cm2 operation in M-GaN LEDs on bulk GaN substrates with low-efficiency droop,” in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII, H. J. Klaus, P. Streubel, Li-Wei Tu, and Martin Strassburg, eds. (International Society for Optics and Photonics, 2014).

Yoo, Y. S.

Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016).
[Crossref]

Yoon, S.

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Young, N. G.

A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017).
[Crossref]

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016).
[Crossref]

Yu, T. J.

Zanoni, E.

M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008).
[Crossref]

Zhan, J. L.

Zhang, B.

L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001).
[Crossref]

Zhang, F.

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Zhang, G. Y.

J. L. Zhan, Z. Z. Chen, Q. Q. Jiao, Y. L. Feng, C. C. Li, Y. F. Chen, Y. Y. Chen, F. Jiao, X. N. Kang, S. F. Li, Q. Wang, T. J. Yu, G. Y. Zhang, and B. Shen, “Investigation on strain relaxation distribution in GaN-based µLEDs by Kelvin probe force microscopy and micro-photoluminescence,” Opt. Express 26(5), 5265–5274 (2018).
[Crossref]

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Zhang, S.

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Zhang, Y. F.

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

Zhang, Z. H.

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

Zhao, W.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Zhou, K.

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

Zhu, D.

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

Zhu, M.

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Appl. Phys. Lett. (12)

S. C. Huang, H. Li, Z. H. Zhang, H. Chen, S. C. Wang, and T. C. Lu, “Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme,” Appl. Phys. Lett. 110(2), 021108 (2017).
[Crossref]

P. F. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Z. Chen, G. Y. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Appl. Phys. Lett. 101(23), 231110 (2012).
[Crossref]

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

A. David, N. G. Young, C. A. Hurni, and M. D. Craven, “All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation,” Appl. Phys. Lett. 110(25), 253504 (2017).
[Crossref]

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109(8), 083501 (2016).
[Crossref]

C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, “Accurate dependence of gallium nitride thermal conductivity on dislocation density,” Appl. Phys. Lett. 89(9), 092123 (2006).
[Crossref]

K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046–1048 (2004).
[Crossref]

V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97(25), 251110 (2010).
[Crossref]

J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, and C. Sone, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1), 011113 (2009).
[Crossref]

D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009).
[Crossref]

X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis,” Appl. Phys. Lett. 108(1), 013501 (2016).
[Crossref]

Chin. Phys. B (1)

J. Z. Li, Y. B. Tao, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, “Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template,” Chin. Phys. B 23(1), 016101 (2014).
[Crossref]

IEEE Electron Device Lett. (1)

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

IEEE Trans. Device Mater. Reliab. (1)

M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8(2), 323–331 (2008).
[Crossref]

J. Appl. Phys. (7)

A. Rashidi, M. Nami, M. Monavarian, A. Aragon, K. DaVico, F. Ayoub, S. Mishkat-Ul-Masabih, A. Rishinaramangalam, and D. Feezell, “Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes,” J. Appl. Phys. 122(3), 035706 (2017).
[Crossref]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010).
[Crossref]

E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, “Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging,” J. Appl. Phys. 112(1), 013107 (2012).
[Crossref]

F. Zhang, M. Ikeda, K. Zhou, Z. Liu, J. Liu, S. Zhang, and H. Yang, “Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions,” J. Appl. Phys. 118(3), 033101 (2015).
[Crossref]

L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. 89(9), 4951–4954 (2001).
[Crossref]

D. A. Browne, B. Mazumder, Y. R. Wu, and J. S. Speck, “Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy,” J. Appl. Phys. 117(18), 185703 (2015).
[Crossref]

K. Jarašiūnas, S. Nargelas, R. Aleksiejūnas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, and Ö. Tuna, “Spectral distribution of excitation-dependent recombination rate in an In0. 13Ga0. 87N epilayer,” J. Appl. Phys. 113(10), 103701 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (2)

Z. Y. Fan, J. Y. Lin, and H. X. Jiang, “III-Nitride micro-emitter arrays: Development and applications,” J. Phys. D: Appl. Phys. 41(9), 094001 (2008).
[Crossref]

Y. S. Yoo, J. H. Na, S. J. Son, and Y. H. Cho, “Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence,” J. Phys. D: Appl. Phys. 49(9), 095101 (2016).
[Crossref]

Laser Photonics Rev. (1)

J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Turnbull, I. D. W. Samuel, and N. Laurand, “Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers,” Laser Photonics Rev. 7(6), 1065–1078 (2013).
[Crossref]

Nat. Photonics (1)

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3(10), 546–549 (2009).
[Crossref]

Opt. Express (6)

A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Opt. Express 22(2), 1372–1380 (2014).
[Crossref]

Q. Q. Jiao, Z. Z. Chen, J. Ma, S. Y. Wang, Y. Li, S. Jiang, Y. L. Feng, J. Z. Li, Y. F. Chen, T. J. Yu, S. F. Wang, G. Y. Zhang, P. F. Tian, E. Y. Xie, Z. Gong, E. D. Gu, and M. D. Dawson, “Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2,” Opt. Express 23(13), 16565–16574 (2015).
[Crossref]

J. L. Zhan, Z. Z. Chen, Q. Q. Jiao, Y. L. Feng, C. C. Li, Y. F. Chen, Y. Y. Chen, F. Jiao, X. N. Kang, S. F. Li, Q. Wang, T. J. Yu, G. Y. Zhang, and B. Shen, “Investigation on strain relaxation distribution in GaN-based µLEDs by Kelvin probe force microscopy and micro-photoluminescence,” Opt. Express 26(5), 5265–5274 (2018).
[Crossref]

S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, “Internal quantum efficiency and carrier dynamics in semipolar (20(2(1) InGaN/GaN light-emitting diodes,” Opt. Express 25(3), 2178–2186 (2017).
[Crossref]

M. Monavarian, A. Rashidi, A. Aragon, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, “Explanation of low efficiency droop in semipolar (20 $\bar {2}\,\bar {1}$2¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients,” Opt. Express 25(16), 19343–19353 (2017).
[Crossref]

H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express 19(4), 2886–2894 (2011).
[Crossref]

Phys. B (1)

M. R. Kim, C. H. Kim, and B. H. Han, “Band-gap renormalization and strain effects in semiconductor quantum wells,” Phys. B 245(1), 45–51 (1998).
[Crossref]

Phys. Rev. B (3)

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94(19), 195411 (2016).
[Crossref]

M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M. D. Neumann, and N. Esser, “Band gap renormalization and Burstein-Moss effect in silicon-and germanium-doped wurtzite GaN up to 1020 cm-3,” Phys. Rev. B 90(7), 075203 (2014).
[Crossref]

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[Crossref]

Semiconductors (1)

N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Y. T. Rebane, M. V. Virko, and Y. G. Shreter, “Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs,” Semiconductors 49(6), 827–835 (2015).
[Crossref]

Thin Solid Films (1)

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, and C. Wetzel, “Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes,” Thin Solid Films 518(6), 1732–1736 (2010).
[Crossref]

Other (7)

APSYS, (2017 version) by Crosslight Software, Inc., Burnaby, Canada, http://www.crosslight.com

E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006), p. 83.

T. Yokogawa and A. Inoue, “Extremely high current density over 1000 A/cm2 operation in M-GaN LEDs on bulk GaN substrates with low-efficiency droop,” in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII, H. J. Klaus, P. Streubel, Li-Wei Tu, and Martin Strassburg, eds. (International Society for Optics and Photonics, 2014).

J. Hader, J. V. Moloney, and S. W. Koch, “Investigation of droop-causing mechanisms in GaN-based devices using fully microscopic many-body theory,” in Gallium Nitride Materials and Devices VIII, Y. N. Jen-Inn Chyi, H. Morkoç, J. Piprek, E. Yoon, and H. Fujioka, eds. (International Society for Optics and Photonics, 2013).

S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).

J. Piprek, P. Abraham, and J. E. Bowers, “Efficiency Analysis of Quantum Well Lasers using PICS3D,” Integrated Photonics Research, 115–117 (1999).

J. Piprek, E. S. Bjorlin, and J. E. Bowers, “Modeling and optimization of vertical-cavity semiconductor laser amplifiers,” in Physics and Simulation of Optoelectronic Devices IX, Y. Arakawa, P. Blood, and M. Osinsk, eds. (International Society for Optics and Photonics, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Optical microscopy images of the micro-LED array (the relative positions of the p-pad and n-pad are illustrated in the top-right corner). (b) Schematic diagram of the LED cross-sectional structure. (c) EL spectrum measured under 2.8 kA/cm2 for fs-20 μm LED.
Fig. 2.
Fig. 2. (a) Normalized light output power (LOP) vs. current density. (b) Voltage at 28 kA/cm2 for micro-LEDs with different pillar diameters and different substrates.
Fig. 3.
Fig. 3. (a) J–V characteristics of the fs-20 µm LED. The red dotted line represents J–V under DC, and the blue dotted line represents J–V under a pulsed current. Ideality factor β of the fs-20 µm LED at current injection densities of (b) 10−5–103 A/cm2 and (c) 103–3.58 × 105 A/cm2.
Fig. 4.
Fig. 4. (a) Normalized external quantum efficiency (EQE) and EL intensity of the fs-20 µm LED vs. current injection density. (b) Slope of the log–log L–I curves and ideality factor β of the fs-20 µm LED vs. current injection density.
Fig. 5.
Fig. 5. (a) Structure of fs-20 µm LED used in the APSYS simulation. (b) Dependence of the electron concentration on the average current density for the fs-20 µm LED. The inset shows the simulation results for the J–V and L–J curves of the fs-20 µm LED. (c) Simulated current density distributions along the diameter of the pillar neighboring the last QW of the fs-20 µm LED with four different average current densities: 1, 10, 100, and 400 kA/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dV dJ = R s A + β k b T e 1 J

Metrics