Abstract

We experimentally demonstrate the first use of 1550-nm InAs/GaAs quantum dot semiconductor saturable absorber mirror (QD-SESAM) in the dual-wavelength passively Q-switched (QS) erbium doped fiber (EDF) laser. The dual-wavelength QS lasing was obtained at a pump threshold of 180 mW with the average output power of 2.2 mW and the spacing between the two lasing wavelengths is 14 nm. A large absorption ranging from 1520 to 1590 nm has been realized when no substrate rotation was employed during the molecular beam epitaxy growth of the QD-SESAM indicating the potential to generate a 60 nm spacing of the dual-wavelength QS lasing peaks by changing the positions in the QD-SESAM and replacing EDF by co-doped fiber as gain medium. These results have provided a new opportunity towards achieving the stable and wide wavelength-tunable dual-modes fiber lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Dual-wavelength fiber lasers, with the advantages of high efficiency, robustness and compact construction, have been the focus of intensive research efforts for a number of applications including terahertz generation, microwave optics, optical sensors, differential absorption lidars, and nonlinear optics [15]. Recently, many techniques have been widely investigated to generate dual-wavelength fiber laser, such as nonlinear polarization technique, Mach-Zehnder interferometer, fiber bragg gratings, and optical filters [610]. The simplified design and low cost are the two main aims being pursued for these kinds of devices. Combining the dynamic gain spectrum shape of erbium-doped fiber (EDF) with various types of saturable absorbers (SAs) [1114] has shown great potential for this aim. 2D materials including graphene, black phosphorus, and molybdenum disulphide are very popular candidates to obtain dual-wavelength QS lasers due to their broadband absorption and good nonlinear optical properties. However, the low damage threshold and inherent instability are issues for this type of devices [15].

QW-SESAM has been proven as a mature candidate to generate stable QS lasing, but the narrow gain spectral width limits its applications in the generation of dual-modes QS lasing. Benefiting from the unique properties of large inhomogeneous dot size distribution, quantum dot (QD) materials have a naturally broad gain spectrum, which has been found their way into a varied of applications such as broadband QD superluminescent diodes [16,17] and broadband QD semiconductor optical amplifier [18]. Like other kinds of SESAMs, the QD-SESAMs can tolerate much higher operation power compare to 2D materials, so with the broad gain spectral feature, it is very promising to be used to generate dual-modes QS lasing by the combination of EDF or other kinds of gain medium, however, there is no reports so far on such devices.

Extending the emission wavelength to 1.55 µm range is a challenge for GaAs based InGaAs QDs [19]. Great efforts have been made in the past over twenty years including the introduction of a strained high In% InGaAs [20], quaternary InGaNAs [21] or ternary InAsSb [22] capping layers over a large size InAs QD layer, or growing InAs QDs on thick metamorphic InGaAs buffer layers/virtual substrate [23], some of which have been employed to develop devices such as broadband light sources [24], QD lasers [25,26], single photon emitters [27], and solar cells [28]. Moreover, the InAs/GaAs QD materials were also fabricated into QD-SESAM for the ultra-fast photonics applications [29,30]. Previously, we have developed an asymmetric In(Ga)As/GaAs dot-in-well QD-SESAM which has been utilized to mode-lock a 10 GHz high repetition rate erbium-doped solid state laser with central wavelength at 1.55 µm [31]. As mentioned above, the broad gain spectrum is essential to realize dual-modes QS lasing, but too large inhomogeneous broadening will cause unstable multi-wavelength pulse operation in a QS laser [8]. So it is necessary to investigate the epitaxy growth and fabrication process of QD-SESAMs in the light of stable dual-mode QS lasing applications.

In this work, to the best of our knowledge, without using any intra-cavity spectral filters or modulators, the first dual-wavelength passively QS EDF laser has been realized by using InAs/GaAs QD-SESAM, in which two steps growth interruption (GI) was introduced before and after InAs QDs molecular beam epitaxy (MBE) growth. The full width at half maximum (FWHM) of the emission spectrum of the QD sample has been found much narrower than that in the QDs described in the previous work [31]. There are two central wavelengths of 1532 and 1546 nm with a spacing of 14 nm corresponding to 1.773 THz frequency difference from the passively QS fiber laser with the maximum output power of 2.2 mW, repetition rate of 44 kHz, and pulsed width of 2.1 µs. In addition, by changing the position of the QD-SESAMs, two QDs absorption wavelengths are observed simultaneously, which indicates the potential for obtaining a broader spacing dual-wavelength fiber laser by using the co-doped fiber as gain medium.

2. Material preparation and experimental setup

The InAs/GaAs QD-SESAM was grown on a semi-insulating GaAs (100) substrate by MBE technique. The test sample used to study optical properties of QDs includes three periods GaAs/InAs/InGaAs dot structures in which 2.9 monolayer (ML) InAs QDs layer was inserted between a 1-nm GaAs underneath layer and a 6-nm In0.31Ga0.69As over-growth layer. The deposition of the InAs was at a growth temperature of 510 °C and a growth rate of 0.01 ML/s. In order to have a smooth surface for QD growth, a 10 s GI was introduced before InAs deposition, and the other 10 s GI was employed after QD growth, which is beneficial for obtaining a uniform dot size distribution. A 55-nm-thick GaAs spacer layer was employed to separate adjacent GaAs/InAs/InGaAs dot structures. The QD-SESAM used for dual-wavelength pulse generation contains one GaAs/InAs/InGaAs dot structure layer grown on the top of 31-pair of λ/4 GaAs/Al0.98Ga0.02As layers acting as a bottom distributed bragg reflector (DBR) mirror. A simplified schematic diagram of the QD-SESAM is shown in Fig. 1(a). The growth temperatures of InAs (InGaAs) and GaAs (AlGaAs) layers were set to be 530 ℃ and 565 ℃, respectively.

 

Fig. 1. Characterizations of 1.55 µm InAs/GaAs QDs. (a) Structural schematic diagram and (b) a 2×2 µm2 AFM image of InAs/GaAs QDs grown without capping layer. (c) The linear reflection spectrum of the QD-SESAM. The inset shows the RT-PL of QD test sample.

Download Full Size | PPT Slide | PDF

Atomic force microscopy (AFM) measurements were performed on uncapped reference sample where the paused growth after the formation of the InAs QDs. A 2×2 µm2 AFM image of InAs QD layer is shown in Fig. 1(b) from which a comparatively high dot density of about 4.0×1010/cm2 can be observed. The size distribution of the grown dots can be clearly observed, and the majority of QDs have an average width and height of ∼40 and 7 nm, respectively. The linear low-intensity reflectivity of the QD-SESAM was measured by using a broadband light source as shown in Fig. 1(c). In this spectrum, a 5% dip at 1544 nm, which is attributed to QD absorption combined with a Fabry Perot resonance between entrance surface and DBR mirror, can be observed in the high reflectivity plateaus from 1480 to 1620 nm. Room temperature photoluminescence (RT-PL) measurements were performed with a solid state laser emitting at 980 nm. As shown in the inset of Fig. 1(c), The RT-PL spectrum of QD test sample exhibits an emission peak at around 1542 nm. It is well known that the use of InGaAs strain reducing layers (SRL) has been a successful method to shift the QD emission to the longer wavelength around 1.3 µm. However, further redshift of the QD emission to 1.55 µm range is very difficult [32]. In this work, the shifted emission around 1.55 µm for InAs/GaAs QDs can be attributed to two main effects. One is the large size (width/height of ∼40 nm/ 7 nm) of QD structure. The larger size of the dots results in weaker carrier confinement [33], and therefore smaller energy (longer wavelength) of the emitted photons. Another effect lies in the higher In composition (31%) of InGaAs SRL, which reduces the surface strain of the InAs QD due to the decreased lattice mismatch between QDs and the over-growth layer. The FWHM of this emission spectrum in the QD test sample is ∼205 nm that is much narrower than that of 270 nm in QD sample grown without growth interruption [31], which can be attributed to the uniform size distribution of QDs induced by the GI.

The experimental setup for the all-fiber dual-wavelength QS laser using InAs/GaAs QD-SESAM as a saturable absorber is presented in Fig. 2. The ring fiber laser mainly consists of a pump source, an EDF with the length of 0.75 m, different sections of single-mode fibers, and some fiber optical components. The polarization controller (PC) was utilized in this ring cavity to control the weak birefringence to assist the QS. A polarization insensitive isolator (PI-ISO) is spliced with the EDF to prevent laser reflecting. The ring laser was initiated with a 980-nm laser diode pump connected to a 980/1550 nm wavelength division multiplexing (WDM) coupler and the output of the PC was connected to Port 1 of a 1550 nm optical circulator. Port 2 of this circulator was linked to the QD-SESAM and the Port 3 was connected to the 10/90 output coupler (OC), which is used to extract 10% of the travelling signal for further analysis while the rest works as feedback inside the cavity. An optical spectrum analyzer (OSA) (Yokogawa AQ75) and a digital phosphor oscilloscope (Rigol DS6104) coupled with a 2-GHz photo-detector (Thorlabs DET01CFC) were used to record the spectral and temporal characteristics of the dual-wavelength QS fiber laser, respectively [3437].

 

Fig. 2. Schematic diagram of experimental setup. (WDM: wavelength division multiplexing; EDF; PI-ISO: polarization insensitive isolator; PC: polarization controller; OC: output coupler).

Download Full Size | PPT Slide | PDF

3. Results and discussion

For the passively Q-switching based on InAs/GaAs QDs as a SA, the transmittance of the SA increases when the intensity of light exceeds some threshold. Initially, the loss of the absorber is relatively high, but still low enough to allow lasing once a large amount of energy is stored in the gain medium. As the laser pumping power increases, the absorber becomes saturated, i.e., leading to rapidly reduced resonator loss, so that the power can increase even faster. Ideally, this brings the absorber into a state with low losses to allow efficient extraction of the stored energy by the laser pulse. After the pulse, the absorber recovers to its high-loss state before the gain recovers, so that the next pulse is delayed until the energy in the gain medium is fully replenished. Figure 3(a) shows the QS pulse trains recorded by the digital phosphor oscilloscope at various pump powers. Once the pump power increases up to 140 mW, the self-started single-wavelength QS state occurs. The laser pulses with the same intensity in temporal domain are clearly observed with the pump power increasing from 150 to 175 mW as shown in Fig. 3(b). When the pump power ranges from 180 to 195 mW, the pulse trains consist of two laser pulses with different intensity as shown in Fig. 3(c), which suggests the generation of the stable dual-wavelength QS pulse laser. To gain insight into the laser pulse, the enlarged laser pulse, which exhibits a Gaussian profile and a duration time of 5.7 µs at 195 mW is shown in the inset of Fig. 3(c).

 

Fig. 3. Output characteristics of the passively Q-switched laser based on InAs/GaAs QD SESAM. (a) Corresponding pulse train evolution under different pump powers. Typical (b) single- and (c) double-wavelength QS pulses under different pump powers. (d) The output power and single pulse energy and (e) repetition frequency and duration time change versus the pump power.

Download Full Size | PPT Slide | PDF

Figure 3(d) shows the variation of the average output power and single pulse energy of the single- and dual-wavelength fiber laser against rising pump power with the same PC. The average output power and single pulse energy are found to increase linearly with the pump power for both single- and dual-wavelength QS regime as shown in Fig. 3(d). In single-wavelength QS regime, the average output power and single pulse energy rise from 0.5 mW and 26 µJ to 1.3 mW and 46 µJ, respectively, when the pump power increases from 140 to 180 mW. In dual-wavelength QS regime, with increasing the pump power, the average output power and single pulse energy rise from 1.2 mW and 36 µJ to 2.2 mW and 49 µJ, respectively. On the boundary of the single- and dual-wavelength QS regimes, the single pulse energy drops at first and then increases with the pump power. One possible explanation is that the variation of the gain wavelength causes the change of the absorption in the gain medium [38]. In addition, it is clearly observed that the linear trend of the output power at the maximum pumping level, indicating that the QD-SESAM is still fully functional without any signs of damage within the very high pump power range, which shows the outstanding merits of stable working and high damage threshold nature of SESAMs compared to 2D materials. Besides that, when decreasing the pumping power from 235 to 160 mW, dual-mode pulse operation is switched to single pulse operation again, and this process could be highly repeated. Figure 3(e) shows the evolution of the repetition rate and pulse width pump power. The repetition frequency (pulse duration) increases (decreases) linearly with the increase of pump power for both single- and dual-wavelength QS regime. In single-wavelength QS regime, when the repetition frequency increases from 19 to 24 kHz, the pulse duration decreases from 14 to 6.1 µs consistently. In dual-wavelength QS regime, the repetition frequency increases from 31 to 44 kHz, while the pulse duration decreases from 6.1 to 2.2 µs. When the pump power is increased, the transmittance of the QD-SESAM increases and the loss of resonator decreases, which increases or decreases the pulse repetition frequency or pulse separation of QS laser.

It is well known that when the gain of EDF is much higher than the optical loss in the cavity, the EDF shape of gain spectrum highly depends on the pump power [39]. Under a very low pump power, the EDF gain at around 1550 nm is quite larger than that at the 1532 nm and a single QS behavior at the center of 1550 nm can be obtained by increasing the power pump. With further increasing the pump power, the EDF gain at around 1532 nm rapidly rises, which induces the dual-wavelength QS behavior. By using a laser spectrometer with a resolution bandwidth of 2 nm to measure the output spectrum, Fig. 4 shows the output spectra of both single- and dual-wavelength QS operation measured under different pump power. The intensity profile in frequency domain of single-wavelength QS laser is shown in Fig. 4(a). The output spectra exhibit one peak at around 1550 nm under the measured pump power. It is also found that both the peak intensity and the linewidth increase as the pump power increases from 150-175 mW. Similarly, in Fig. 4(b), the lasing of the two wavelengths on the OSA displays a growth trend for both peak intensity and linewidth as the pump power increases from 180 to 235 mW. It also clearly shows the two central wavelengths of 1532 and 1546 nm corresponding to frequency difference of 1.773 THz. The output central wavelengths for both single- and dual-wavelength QS operations are well in agreement with the absorption and emission peaks of the QD-SESAM as shown in Fig. 1(c). The physical process that induces the transition from single- to dual-wavelength operation can be explained by analyzing the variation process of EDF gain wavelength range and the reduction process of the QD-SESAM loss. When the pump power is lower than 180 mW, the EDF gain is mainly at around 1550 nm. As the laser power increases in this pump power range (≤180 mW), the QD-SESAM’s transmittance at 1550 nm is increased, which decreases the resonator loss and results in the generation of the single-wavelength QS laser pulse with the central wavelength of 1550 nm. When the pump power is increased up to 180 mW, the EDF gain at 1532 nm rapidly rises. With the pump power further increased, the QD-SESAM’s transmittance at both 1532 and 1546 nm is increased. It decreases the resonator loss and generates the dual-wavelength QS laser pulses with the central wavelength of 1532 and 1546 nm. Moreover, for single-wavelength QS operation, the linewidth for the peak at 1550 nm increases from 8 to 11 nm with the pump power. For dual-wavelength QS operation, with the increase of pump power, the linewidth increases from 2.5 to 2.9 nm for 1532-nm peak and from 5.1 to 5.6 nm for 1546-nm peak, respectively. Different from the conventional SAs, InAs/GaAs QDs have the characteristic of highly scattering, which makes the laser uniform both in frequency and special domain. As a result, the laser has two broad spectra in different center wavelengths, which is different from the previous QS lasers. The amplified spontaneous emission (ASE) peak can be obtained at around 1560 nm at the pump power below 140 mW. The obtained linewidth for the ASE peak at the pump power of 130 mW is about 30 nm. The spectral power density in the pump power range from 120 to 235 mW was calculated as shown in Fig. 4(c). ASE, single- and dual-wavelength QS operation regimes can be clearly observed under different pump power. At the threshold power of 140 mW, the spectral power density suddenly increases indicating the appearance of QS lasing behavior. The spectral power density of single- and dual-wavelength QS operation linearly increases with the increase of pump power. The slopes of the fitting lines for the spectral power density of single- and dual-wavelength QS operation are 5.8×10−4 and 1.4×10−3, respectively. The increased slopes for dual-wavelength QS operation can be attributed to the dual-wavelength lasing.

 

Fig. 4. Output optical spectra of the passively Q-switched laser based on InAs/GaAs QD SESAM. Output spectra of (a) single- and (b) dual-wavelength QS lasers measured under different pump powers. (c) The spectral power density versus the pump power.

Download Full Size | PPT Slide | PDF

Dual-wavelength QS lasers can also be achieved by using other types of techniques as cited previously, such as Mach-Zehnder filter and fiber Bragg gratings [610]. In our design, dual-wavelength operation was achieved by using QD-SESAM as the saturable absorber material and utilizing the gain dynamics of the EDF without any intra-cavity spectral filters or modulators. In addition, during the experiments, no QS pulse was detected on the oscilloscope after the QD-SESAM being removed from the fiber laser, and the fiber laser returned to the continuous wave regime whatever the pump power was. By inserting the QD-SESAM into the fiber laser again, QS operation can be observed as well. This indeed reflects that the QS operation is purely induced by QD-SESAM rather than the nonlinear polarization rotation effect. Moreover, by using the QD-SESAM, 4 QS fiber lasers with the similar performances were fabricated, which suggests the high repeatability.

The absorption wavelength range is decided by the sizes (In%) of dots in a QD-SESAM that provides a large flexibility for the design and fabrication of a QD-SESAM and hence the related QS lasers or mode-locked lasers. As shown in Fig. 5(a), the schematic figure of the QD-SESAM, which prepared by the method of no substrate rotation during the QD growth [4042], and the QD-SESAM sample can be divided into four parts named I, II, III, and the ungrown area, respectively. Figures 5(b) and 5(d) show the linear reflection spectra measured at positions of I, II, and III, respectively. It can be seen clearly that the absorption wavelengths of area I and III are at 1580 and 1560 nm and the emission peaks are located at 1583 and 1564 nm in RT-PL spectra of areas I and III, separately, which indicates that different absorption wavelengths of the QDs were successfully realized due to reduced In% from I to III caused by the QD grown without substrate rotation. The buleshift of both the absorption and emission peaks is induced by higher energy states in the smaller dots caused by reduced In% deposition. As reported by Sun, et al. [43] and Zhou, et al. [44], the absorption (emission) wavelength can further shift to the short wavelength direction in the growth area of 2D or quasi-3D InAs wetting layer. However, no 2D or quasi-3D InAs wetting layer is observed in our work, which can be attributed to the larger average deposition amount (2.9 ML) of InAs during the growth process. As revealed by Fig. 5(c), there are two QD absorption peaks observed at 1520 and 1590 nm which correspond to the emission peaks at 1525 and 1593 nm in the RT-PL spectrum. The two absorption (emission) peaks observed in area II could be attributed to the varied (un-uniform) Indium concentration which results in two main distributions of the dot size. The two absorption wavelengths indicate that it is potential to obtain the dual-wavelength QS operation at these two central peaks corresponding to the frequency difference of 6.85 THz by using the co-doped fiber as the gain medium instead of EDF.

 

Fig. 5. Optical properties of the QD-SESAM grown without substrate rotation during the QD growth. (a) Schematic figure of the QD-SESAM. The linear reflection spectra of (b) the area I, (c) the area II, and (d) the area III. The insets of (b), (c), (d) are the RT-PL spectra for the area I, II, III on the QD test sample grown without substrate rotation, respectively.

Download Full Size | PPT Slide | PDF

4. Summary

In this work, for the first time, we demonstrate a self-starting dual-wavelength passively QS EDF laser, which has two central wavelengths of 1532 and 1546 nm based on InAs/GaAs QD-SESAM without using any intra-cavity spectral filters or modulators. With the pump power increased from 140 to 235 mW, the duration time of the output pulse decreases from 14 to 2 µs and the repetition rate increases from 19 to 45 KHz. The output pulses have maximum single pulse energy of 49 µJ and the maximum average output power of 2.2 mW. The dual-wavelength EDF laser has exhibited the great potential for the applications of terahertz generation, radar, optical sensors, and so on.

Funding

The Key Research and Development Plan of Ministry of Science and Technology (2016YFB0402303); National Natural Science Foundation of China (NSFC) (61875222, 61605106); China Postdoctoral Science Foundation (2017M621858).

References

1. Y. Liu, K. Zhong, J. L. Mei, C. Liu, J. Shi, X. Ding, D. G. Xu, W. Shi, and J. Q. Yao, “Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser,” Opt. Express 25(25), 31988–31996 (2017). [CrossRef]  

2. Y. Sun, Y. Bai, D. Li, L. Hou, B. Bai, Y. Gong, L. Yu, and J. Bai, “946 nm Nd:YAG double Q-switched laser based on monolayer WSe2 saturable absorber,” Opt. Express 25(18), 21312 (2017). [CrossRef]  

3. J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016). [CrossRef]  

4. A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011). [CrossRef]  

5. Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010). [CrossRef]  

6. M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015). [CrossRef]  

7. H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017). [CrossRef]  

8. J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018). [CrossRef]  

9. M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014). [CrossRef]  

10. Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011). [CrossRef]  

11. Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019). [CrossRef]  

12. Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018). [CrossRef]  

13. S. Kobtsev, A. Ivanenko, and Y. G. Gladush, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016). [CrossRef]  

14. Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011). [CrossRef]  

15. L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013). [CrossRef]  

16. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010). [CrossRef]  

17. C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018). [CrossRef]  

18. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

19. J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010). [CrossRef]  

20. L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008). [CrossRef]  

21. M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005). [CrossRef]  

22. J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005). [CrossRef]  

23. N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003). [CrossRef]  

24. L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016). [CrossRef]  

25. Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006). [CrossRef]  

26. E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004). [CrossRef]  

27. G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016). [CrossRef]  

28. I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016). [CrossRef]  

29. K. W. Su, H. C. Lai, A. Li, Y. F. Chen, and K. F. Huang, “InAs/GaAs quantum-dot saturable absorber for a diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 30(12), 1482–1484 (2005). [CrossRef]  

30. C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007). [CrossRef]  

31. Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012). [CrossRef]  

33. A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018). [CrossRef]  

34. A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997). [CrossRef]  

35. Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019). [CrossRef]  

36. C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019). [CrossRef]  

37. X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014). [CrossRef]  

38. Y. Tang, X. Yu, X. Li, Z. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Lett. 39(3), 614–617 (2014). [CrossRef]  

39. B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010). [CrossRef]  

40. D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012). [CrossRef]  

41. E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008). [CrossRef]  

42. L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010). [CrossRef]  

43. Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006). [CrossRef]  

44. J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004). [CrossRef]  

45. G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, K. Zhong, J. L. Mei, C. Liu, J. Shi, X. Ding, D. G. Xu, W. Shi, and J. Q. Yao, “Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser,” Opt. Express 25(25), 31988–31996 (2017).
    [Crossref]
  2. Y. Sun, Y. Bai, D. Li, L. Hou, B. Bai, Y. Gong, L. Yu, and J. Bai, “946 nm Nd:YAG double Q-switched laser based on monolayer WSe2 saturable absorber,” Opt. Express 25(18), 21312 (2017).
    [Crossref]
  3. J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
    [Crossref]
  4. A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
    [Crossref]
  5. Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
    [Crossref]
  6. M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
    [Crossref]
  7. H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
    [Crossref]
  8. J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
    [Crossref]
  9. M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
    [Crossref]
  10. Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
    [Crossref]
  11. Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
    [Crossref]
  12. Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
    [Crossref]
  13. S. Kobtsev, A. Ivanenko, and Y. G. Gladush, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
    [Crossref]
  14. Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
    [Crossref]
  15. L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
    [Crossref]
  16. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
    [Crossref]
  17. C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
    [Crossref]
  18. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.
  19. J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
    [Crossref]
  20. L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
    [Crossref]
  21. M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
    [Crossref]
  22. J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
    [Crossref]
  23. N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
    [Crossref]
  24. L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
    [Crossref]
  25. Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
    [Crossref]
  26. E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
    [Crossref]
  27. G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
    [Crossref]
  28. I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
    [Crossref]
  29. K. W. Su, H. C. Lai, A. Li, Y. F. Chen, and K. F. Huang, “InAs/GaAs quantum-dot saturable absorber for a diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 30(12), 1482–1484 (2005).
    [Crossref]
  30. C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
    [Crossref]
  31. Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
    [Crossref]
  32. A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
    [Crossref]
  33. A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
    [Crossref]
  34. Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
    [Crossref]
  35. C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
    [Crossref]
  36. X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
    [Crossref]
  37. Y. Tang, X. Yu, X. Li, Z. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Lett. 39(3), 614–617 (2014).
    [Crossref]
  38. B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
    [Crossref]
  39. D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
    [Crossref]
  40. E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
    [Crossref]
  41. L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
    [Crossref]
  42. Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
    [Crossref]
  43. J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
    [Crossref]
  44. G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
    [Crossref]

2019 (3)

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

2018 (4)

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

2017 (3)

2016 (5)

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

S. Kobtsev, A. Ivanenko, and Y. G. Gladush, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
[Crossref]

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

2015 (1)

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

2014 (3)

2013 (1)

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

2012 (2)

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
[Crossref]

2011 (4)

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

2010 (5)

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

2008 (2)

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

2007 (1)

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

2006 (2)

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

2005 (3)

K. W. Su, H. C. Lai, A. Li, Y. F. Chen, and K. F. Huang, “InAs/GaAs quantum-dot saturable absorber for a diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 30(12), 1482–1484 (2005).
[Crossref]

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

2004 (2)

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

2003 (1)

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

1997 (1)

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Ahmad, H.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Alaskar, Y.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Albadri, A.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Alcock, J.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Allegri, P.

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Alshaibani, S.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Alyamani, A.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Arakawa, Y.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Avanzini, V.

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Babar, I. M.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Bai, B.

Bai, J.

Bai, Y.

Barrera, D.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Beveratos, A.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Bhattacharya, P.

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Bian, Y.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Bimberg, D.

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Blokhin, S. A.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Blumin, M.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Bocchi, C.

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

Bosacchi, A.

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Cappelluti, F.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

Chen, H. M.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Chen, Y.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Chen, Y. F.

Chen, Y. H.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Cheng, X.

Childs, D.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Damilano, B.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

DeCuir, E. A.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Dianov, E.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Ding, X.

Dorogan, V. G.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Duboz, J. Y.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Dvoyrin, V. V.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Egorov, A. Y.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Escamilla, B. I.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Fang, Z. J.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Fedosejevs, R.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Feng, T.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Franchi, S.

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Frigeri, P.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

García, A. G.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Ge, Y.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Gioannini, M.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

Gladush, Y. G.

Gladyshev, A. G.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Gong, Y.

Granados, D.

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Guo, P.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Guo, P. L.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

Guo, Y. X.

Guo, Z.

Han, I. S.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Harun, S. W.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Hogg, R. A.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Hostein, R.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Hou, C. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Hou, L.

Huang, K. F.

Huang, Y. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Hui, Z.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Ismail, M. F.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Ivanenko, A.

Jin, P.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

Jin, Z. W.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Jordan, R. C.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Jusoh, Z.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Keller, U.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Kim, J. O.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Kim, J. S.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Kobtsev, S.

Kovsh, A. R.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Kryzhanovskaya, N. V.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Kurmulis, S.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Kuwatsuka, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Kuzin, E. A.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Lai, H. C.

Largeau, L.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Ledentsov, N. N.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Lee, S. J.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Lemaite, A.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Li, A.

Li, A. Z.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Li, D.

Li, G.

Li, S.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Li, X.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Y. Tang, X. Yu, X. Li, Z. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Lett. 39(3), 614–617 (2014).
[Crossref]

Li, X. H.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

Li, Y.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Liu, C.

Liu, F. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Liu, J.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Liu, J. M.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Liu, J. R.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Liu, L.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Liu, Y.

Lu, H.

Luo, A. P.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Luo, W. F.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Luo, Z. C.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Lv, X. Q.

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Ma, W.

Maleev, N. A.

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Manasreh, M. O.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Mangold, M.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Mao, D.

Mashinsky, V. M.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Massies, J.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Matutano, G. M.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Mauguin, O.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Maximov, M. V.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Mazur, Y. I.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Mei, J. L.

Mi, Z.

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Mikhrin, S. S.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Missous, M.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Molina, S. I.

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Musikhin, Y. G.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Nasi, L.

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

Nikitina, E. V.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Ning, J. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Noh, S. K.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Odnoblyudov, V. A.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Oehler, A. E.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Ordoñez, F. M.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Pastor, J. M.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Patriache, G.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Philip, I. R.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Pottiez, O.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Pousa, C. R. F.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Resan, B.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Richter, M.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Ripalda, J. M.

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Rosas, A. F.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Ruda, H.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Sabran, M. B. S.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Sacconi, F.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

Salamo, G. J.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Sales, S.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Salhi, A.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Samion, M. Z.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Sánchez, M. D.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Saveliev, I.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Scurtescu, C.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Semenova, E. S.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Seravalli, L.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

Shao, D.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Sharbirin, A. S.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Shernyakov, Y. M.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Shi, J.

Shi, W.

Su, K. W.

Su, L.

Su, Y.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Süedmeyer, T.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Sugawara, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Sun, J.

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

Sun, S.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Sun, Y.

Sun, Z.

Tamayo, R. I. Á.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Tang, Y.

Taschuk, M. T.

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Tian, Y.

Trevisi, G.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

Tsui, Y. Y.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Ustinov, V. M.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Vasil’ev, A. P.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Wang, C.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Wang, J.

Wang, L.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Wang, Q.

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Wang, Q. J.

Wang, Y.

Wang, Y. G.

Wang, Z. G.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

Wang, Z. M.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Weingarten, K. J.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Wieck, A. D.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Wu, J.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Xu, D. G.

Xu, S. X.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Xu, W.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Xu, W. C.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Yan, Z.

Yang, J.

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Yang, S.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Yao, B.

Yao, J. Q.

Ye, Q.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Ye, X. L.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Yin, H. S.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Yu, J. L.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Yu, L.

Yu, X.

Zhang, H.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

Zhang, J. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Zhang, Y.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

Zhang, Z. Y.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Zhao, W.

Zhao, X.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Zheng, H. R.

Zheng, S. Q.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Zheng, Z.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zhong, K.

Zhou, G. Y.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Zhou, K. J.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Zhou, X. L.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Zhu, J.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zhukov, A. E.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Zhuo, N.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Adv. Opt. Photonics (1)

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Appl. Phys. Lett. (5)

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Carbon (1)

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Curr. Appl. Phys. (1)

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Electron. Lett. (2)

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

IEEE Photonics J. (2)

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

J. Appl. Phys. (3)

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

J. Cryst. Growth (1)

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Light: Sci. Appl. (1)

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Mater. Res. Soc. Symp. Proc. (1)

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Microw. Opt. Technol. Lett. (1)

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Nano Lett. (1)

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Nanoscale (1)

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Nanotechnology (3)

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

Opt. Commun. (1)

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Opt. Express (7)

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

S. Kobtsev, A. Ivanenko, and Y. G. Gladush, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
[Crossref]

Y. Liu, K. Zhong, J. L. Mei, C. Liu, J. Shi, X. Ding, D. G. Xu, W. Shi, and J. Q. Yao, “Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser,” Opt. Express 25(25), 31988–31996 (2017).
[Crossref]

Y. Sun, Y. Bai, D. Li, L. Hou, B. Bai, Y. Gong, L. Yu, and J. Bai, “946 nm Nd:YAG double Q-switched laser based on monolayer WSe2 saturable absorber,” Opt. Express 25(18), 21312 (2017).
[Crossref]

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
[Crossref]

Opt. Lett. (2)

Optik (1)

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Photonics Res. (1)

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Proc. SPIE (1)

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Sci. Rep. (2)

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Other (1)

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Characterizations of 1.55 µm InAs/GaAs QDs. (a) Structural schematic diagram and (b) a 2×2 µm2 AFM image of InAs/GaAs QDs grown without capping layer. (c) The linear reflection spectrum of the QD-SESAM. The inset shows the RT-PL of QD test sample.
Fig. 2.
Fig. 2. Schematic diagram of experimental setup. (WDM: wavelength division multiplexing; EDF; PI-ISO: polarization insensitive isolator; PC: polarization controller; OC: output coupler).
Fig. 3.
Fig. 3. Output characteristics of the passively Q-switched laser based on InAs/GaAs QD SESAM. (a) Corresponding pulse train evolution under different pump powers. Typical (b) single- and (c) double-wavelength QS pulses under different pump powers. (d) The output power and single pulse energy and (e) repetition frequency and duration time change versus the pump power.
Fig. 4.
Fig. 4. Output optical spectra of the passively Q-switched laser based on InAs/GaAs QD SESAM. Output spectra of (a) single- and (b) dual-wavelength QS lasers measured under different pump powers. (c) The spectral power density versus the pump power.
Fig. 5.
Fig. 5. Optical properties of the QD-SESAM grown without substrate rotation during the QD growth. (a) Schematic figure of the QD-SESAM. The linear reflection spectra of (b) the area I, (c) the area II, and (d) the area III. The insets of (b), (c), (d) are the RT-PL spectra for the area I, II, III on the QD test sample grown without substrate rotation, respectively.

Metrics