Abstract

Active use of phase transition phenomena for reversibly tuning the properties of functional materials in devices currently is an attractive research area of materials science. We designed and fabricated two kinds of metasurface modulators for dynamically controlling the wavefront of terahertz (THz) radiation based on the temperature-induced insulator-to-metal phase transition of vanadium dioxide (VO2). The modulators designed are based on the C-shaped slot antenna array. The slot antennas are made of the VO2 films on c-sapphire substrates. The C-shaped slot antennas are active only when the VO2 is in its metallic phase, i.e. at temperatures T > TC ∼68 °C. At T > TC, the first kind acts as a THz multi-focus lens which converges an incident THz plane wave into four focal spots and the second kind as an Airy beam generator. We characterized the function of two THz wavefront modulators over a broad frequency range, i.e. from 0.3 to 1.2 THz. Such thermally switchable THz wavefront metasurface modulators with a capability of dynamically steering THz fields will be of great significance for the future development of THz active devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, due to the rapid development of terahertz (THz) radiation sources and detection technologies, the potential applications of THz waves have become widely recognized. THz technology is now practically applied in many ways including wireless communication [1], biological sample spectroscopy [2], imaging [3], and sensing [4]. However, dynamitic tunable THz functional devices are still in great demand due to a lack of natural materials which respond to the THz radiation. Artificial composite materials offer a tunability of the effective permittivity and permeability in the THz spectral range which goes far beyond that of most natural materials [5]. Employing such artificial materials as functional elements in electronic and optical devices for manipulating THz radiation is of paramount importance for further advancing the development of THz technology in practical applications. Metamaterials and metasurfaces belong to the class of artificial composite materials. Employing them in THz optical elements should yield an efficient control of the THz waves [6–8]. Furthermore, the performance of these metamaterials can be tuned by applying an external voltage [9–12], optical pumping [13,14], or a mechanical force [15] offering the potential to fabricate switchable and tunable THz devices.

Bulk vanadium dioxide (VO2), a classical transition metal oxide, undergoes an insulator-to-metal transition (IMT) as a function of temperature at a transition temperature TC of about 68 °C [16]. The phase transition may also be triggered by optical fields [17–19], electric fields [20–23], or thermal radiation [24–26]. The material VO2 recently has attracted the attention of the THz community. Active functionality of THz devices may be achieved by combining VO2 thin films and metallic metamaterials [27]. Several THz metasurface modulators based on the phase transition of VO2 have been proposed [28–30]. Examples are the design of a THz metasurface, which provides a large phase shift for THz waves (575-630 GHz) within 55 GHz bandwidth when an external laser illumination is utilized [31], or a broadband THz absorber with an almost 100% absorption [32]. However, virtually all VO2 based devices proposed so far act as spectral modulators of THz waves only. Spatial modulators, which manipulate the THz wavefront, are studied to a much lesser extent to date. A THz switchable metasurface lens based on V shaped gold antennas on a VO2 thin film was presented earlier [33]. Its focal intensity can be thermally controlled, i.e., above TC the transmission of the THz radiation through the VO2 film is blocked. Thus, the function of the metasurface lens switches off when the temperature is higher than TC. However, for many applications it is desirable that the function of the devices turns on when the temperature is increased or that the devices does not affect THz wavefront in its off-state. Solyankin et al. proposed a THz switching focuser based on thin film VO2 zone plate [34]. The VO2 film is used to modulate only the transmission of the THz radiation.

In this paper, we present two thermally switchable THz metasurface wavefront modulators, a THz multi-focus lens (TML) and a THz Airy beam generator (TAG). In contrast to previous designs, these metasurface devices consist of microstructured VO2 thin films only and no other metal structures are employed. When the temperature is above TC, the VO2 material exhibits metallic characteristics and the device function switches on, i.e. the metasurfaces transfer the input x-polarized THz wave into y-polarized wave with desired phase and amplitude modulations, then the y-polarized THz plane wave is focused into four focus points or a y-polarized THz Airy beam is generated. In the off-state at temperatures below TC, the devices are to a good approximation transparent and do not affect the THz wavefront. Thus, controlled tuning of the ambient temperature yields a dynamic regulation of the THz device function. The characteristics of the two THz metasurface wavefront modulators have been investigated in the frequency range from 0.3 to 1.2 THz utilizing a THz holographic imaging system.

2. Basic idea and sample fabrication

2.1 Basic idea and sample design

The general idea for studying the operational characteristics of the designed metasurface devices on the THz wavefront is depicted schematically in Fig. 1. At 20 °C, which is lower than the TC of VO2, the metasurface device is in its off-state and will not affect the THz wave, as shown in Fig. 1(a). At 70 °C, which is larger than the TC of VO2, the device function will be turned on and the THz wavefront will be modulated. Two active THz wavefront modulator devices are designed and fabricated. One device can focus the THz wave into four foci as shown in Fig. 1(b) and another can generate a THz ring-Airy beam as shown in Fig. 1(c) in their on-state. Both devices were fabricated by microstructuring arrays of C-shaped slot antenna with various opening angles into VO2 thin films (thickness about 1 µm) grown on c-sapphire substrates (thickness 330 µm) with a thin TiO2 buffer layer (thickness 20 nm). The C-shaped slot antennas made of VO2 only affect the THz radiation at temperatures above TC when the VO2 is metallic. The geometric parameters of each C-shaped slot antenna [35,36] allow one to manipulate locally amplitude and phase of the scattered cross-polarized THz field. Thus, an array of specially designed C-shaped slot antennas may be used for amplitude and phase modulation of the wavefront of a THz plane wave [37,38]. The geometric parameters of an antenna unit are indicated in Fig. 2(a). The azimuth angle (β) of the C-shaped slot antenna is the angle between the axis of symmetry and the x-axis (defining the direction of the linear polarization Ex of the incoming THz radiation). R and r are the outer and inner radii of the circular fractions forming the C ring, respectively. The parameter θ defines the opening angle of the split. P is the pitch of the array of antenna units. The parameters chosen are the following: P = 100 μm, R = 40 μm, and r = 30 μm.

 

Fig. 1 Schematic image of the setup used for studying operational characteristics of the THz wavefront modulators as a function of temperature. (a) The device has no effect on the THz wave in its off-state (e.g., at T = 20 °C < TC). The THz device acts on the THz wave in its on-state (e.g., at T = 70 °C > TC) as (b) a multiple foci lens or (c) a Ariy beam generator. TTML: Temperature controlled THz multi-focus lens. TTAG: Temperature controlled THz Ariy beam gererator.

Download Full Size | PPT Slide | PDF

 

Fig. 2 (a) Schematic image of a C-shaped slot antenna indicating the characteristic parameters. (b) Photograph of a part of TML. (c) Transmittance of a VO2 reference thin film sample during heating (red curve) and cooling (blue curve). The phase transition temperature TC is about 68 °C.

Download Full Size | PPT Slide | PDF

The metasurface designs of the TML and TAG have already been proposed in [37] and [38], respectively. We choose the same parameters to realize such devices in VO2 and thus make them thermally switchable. The design of the four focus TML should yield a focal length of 8.0 mm and the thermally controlled TAG will generate a THz ring-Airy beam with the characteristic parameters of r0 = 1.0 mm, w = 0.3 mm, and a = 0.3, where r0, w, and a are the primary ring radius, the scaling length, and truncation factor of the ring-Airy beam, respectively.

The metasurface, i.e. the array of VO2 antennas, acting as THz multi-focus lens is assembled out of eight different types of C-shaped slot antenna units which differ in their geometric parameters by the split opening angles (θ = 10°, 35°, 100°, and 132°) and azimuth angles (β = ± 45°). Each type of antenna unit yields a different constant phase change of the cross-polarized wave in the range from 0 to 2π at the design operating frequency of 0.8 THz [37]. This way the eight different antenna units allow one to realize eight distinct phase shifts with an equal spacing of π /4 in the range from 0 to 2π. The cross-polarized scattered fields of all eight antenna units have almost identical amplitude modulations. The Yang-Gu amplitude-phase retrieval algorithm [39] is used to derive the targeted spatial phase distribution of the TML. This spatial phase distribution is digitized in terms of multiples of π /4 (each multiple corresponding to one of the eight types of antenna) and antenna units of the identified type are selected to fill in the corresponding positions. A micrograph of part of the metasurface of the TML is depicted in Fig. 2(b). It shows antenna units which are microstructured into the VO2 thin film and are regularly arranged with a pitch of 100 µm. Furthermore, the different antenna units corresponding to different local phase shifts can be clearly distinguished.

The tunable TAG was realized in a similar fashion. In this case, 32 different types of antenna units were used to digitalize the spatial distributions of phase and amplitude in the corresponding metasurface plane. The different antenna types yield an amplitude quantization into 16 values ranging from 0 to the intensity maximum at the operating frequency of 0.8 THz for phase shifts of π and 2π [38]. The azimuth angles of the 32 antenna units are chosen as follows: β = ± 1°, ± 3°, ± 4°, ± 6°, ± 7°, ± 8°, ± 9°, ± 10°, ± 12°, ± 13°, ± 17°, ± 19°, ± 21°, ± 25°, ± 30°, and ± 45°. The positive sign and negative sign indicate the phases of the cross-polarized wave are π and 2π, respectively. The other geometric parameters of the C-shaped slot antenna are the same as before, but with a split opening angle θ of 100°. The pitch of the regular antenna arrangement was again 100 µm. The 32 different antenna units are placed at the corresponding positions on the metasurface according to the electric field distribution both in terms of amplitude and phase of a ring-Airy beam in its initial plane.

Transmittance measurements of a reference sample, a pristine, not structured VO2 thin films, yield the transition temperature. The transmittance at 0.8 THz drops to zero above TC due to the plasmonic resonance of the free carriers present in the metallic phase. As shown in Fig. 2(c), the IMT is completed at 68 °C during the heating process while the sample is still in the metallic state at 64 °C during the cooling process. This hysteresis behavior as well as a TC lower than in bulk material are typical for polycrystalline thin films and originate from the grain structure. Therefore, we selected the temperatures of 20 °C (insulation state) and 70 °C (metallic state) to complete the imaging experiment.

2.2 Sample fabrication

The VO2 containing layer structures were fabricated on c-sapphire substrates with a thickness of 330 μm. First, a buffer layer of TiO2 was deposited by ion-beam sputter-deposition. The ion source was a specially designed radio frequency (rf) ion source of the type RIM-10 developed at Justus Liebig University Giessen. The target employed was a hot-pressed TiO2 target. Second, the functional layer of VO2 was deposited by conventional rf-sputter deposition employing a metallic target of vanadium and a mixture of Ar and O2 gas as working gas in the sputter process. Afterwards, in a third preparation step, the samples were structured by photolithography followed by ion beam etching. A negative photoresist “AZ 125 nXT IOA” was spin-coated onto the samples for 125 s at 1600 rpm. After a soft-bake at 140 °C for 10 minutes, the actual photolithographic structuring of the photoresist was carried out using a mask with the pattern of two dimensional metasurface. The irradiance was 4.7 mW/cm2 at 365 nm and the exposure time was 171 seconds. The patterned resist layer was obtained after developing the samples in “AZ 856 MIF” for 60 seconds. The resist pattern served as protection mask in the subsequent etching process used to transfer the pattern into the VO2 film and to obtain the metasurface consisting of VO2 microstructures. Ion-beam etching was employed to remove the VO2 thin film in places not covered by the resist protection mask. A commercial system with an ion source of Kaufmann-type was employed. Ar ions with an energy of 700 eV were extracted and directed onto the sample surface at normal incidence. In order to avoid thermal degradation of the photoresist protection mask, the etching process was interrupted every 20 min for another 20 min to allow the sample to cool down. The etching process terminated when the unprotected VO2 was removed. After etching, the photoresist protection mask had to be stripped off the sample. This was achieved by immersing the sample in the commercially available solution “Technistrip” for about one hour.

3. Experimental results

3.1 Measurement

A THz imaging system [40,41] was used to characterize the performance of the thermally controllable THz wavefront modulators. A scheme of the experimental set-up is depicted in Fig. 3. A Ti: sapphire regenerative amplifier with a center wavelength of 800 nm and a 1-kHz repetition rate served as light source and provided 100 fs ultrashort laser pulses. The laser beam with an average power of 900 mW was divided into two parts, a pump beam (880 mW) and a probe beam (20 mW) for generating and detecting the THz waves, respectively. The sample under investigation was placed at normal incidence into the THz light beam generated by a < 110 > ZnTe crystal. A horizontal THz beam (x-polarization: Ex) with a diameter of 20 mm impinged onto the sample, and the forward scattered vertical THz beam (y-polarization: Ey) was detected by a second <110> ZnTe crystal. The sample under study (a THz TML in the figure) was positioned at a defined distance z away from the detecting crystal. The z-scan measurements of the TML and TAG devices were performed by simply moving the sample along the z-axis. The sample was placed onto a heated sample holder yielding the possibility to control and adjust the sample temperature. Experiments in the off-state and on-state of the VO2 metasurfaces were performed at 20 and 70 °C, respectively.

 

Fig. 3 THz imaging system. HWP: half wavelength plate, PBS: polarization beam splitter, L: lens, PM: parabolic mirror, TTML: Temperature controlled THz multi-focus lens, BS: beam splitter, QWP: quarter-wavelength plate, WP: Wollaston polarizer.

Download Full Size | PPT Slide | PDF

3.2 Experimental results and discussion

The intensity distributions on the focal plane of the TML measured with THz radiation of 0.8 THz (design operating frequency) at temperatures of 20 °C and 70 °C are shown in Figs. 4(a) and 4(b), respectively. A uniform THz spot with a diameter of 4.0 mm is visible in the focal plane at 20 °C. It corresponds to the parallel beam of THz radiation passing the TML almost unaltered. At this temperature, the VO2 is in its insulating phase and the antenna structures do not modulate the wavefront, i.e. the lens action of the TML is switched off. The image on the focal plane changes at 70 °C when the VO2 is in its metallic phase, i.e., the device is in its on-state. Four foci can be clearly distinguished in the corresponding image indicating that the VO2 microstructures indeed act as C-shaped slot antennas and modulate the THz wavefront. The distances between pairs of two adjacent focal points along the x and y direction are both 2 mm in concordance with the design of the TML. The experimental results clearly show that the IMT of the VO2 has not been affected by the microstructuring of the thin film and that antenna structures microstructured into VO2 may indeed serve as actively switchable building blocks of THz devices based on metastructures or metasurfaces. To analyze the properties of the TML in its on-state further, the lateral intensity distributions along the dashed lines indicated in Fig. 4(b) are extracted and shown in Fig. 4(c). The red and blue curves represent the intensity distributions along the line A and line B, respectively. The numerical simulation results are also presented in dash lines for better comparison. For the simulation, the same phase distribution obtained by the Yang-Gu algorithm is used and a uniform illumination is assumed. The theory of the angular spectrum is then employed to calculate the intensity distribution in the focal plane, which is 8.0 mm away form the input plane. Each of the lateral intensity distributions is normalized to its maximum value. All four focal points exhibit a Gaussian shape with a full-width-at-half-maximum (FWHM) of 435 μm. The focusing action of the four foci is significant. The intensities of the two foci on the right-hand side of the image are somewhat stronger, which is very likely due to a slight sample misalignment in the experiment.

 

Fig. 4 Switching characteristics of the TML. Experimental intensity distributions on the nominal focal plane for 0.8 THz radiation at 20 °C in the off-state (a) and at 70 °C in the on-state (b), respectively. (c) Transverse intensity profiles on the focal plane recorded along the dashed lines in (b). The red and blue curves represent the experimental transverse intensities of Line A and Line B, respectively.

Download Full Size | PPT Slide | PDF

We further study the focusing and propagation of the TML at different THz frequencies in its on-state, i.e., at 70 °C above TC. Figures 5(a)-5(d) depict the focal intensity distributions on the focal plane for the THz radiation with frequencies of 0.3, 0.5, 0.8, and 1.2 THz, respectively. The same pattern of four focal points is clearly visible for all four frequencies, which demonstrates that the TML can operate in a broad frequency band from 0.3 to 1.2 THz. Figures 5(e)-5(h) show the intensity distributions at x = 1.0 mm (the position of two focal points on the right-hand side) along the z direction for the four frequencies. It can be observed that, as the frequency increases, both the focal length and the depth of focus increase. The diffraction efficiencies (defined as the ratio of the intensity on the focal plane to the intensity of incident wave of the same frequency) is 44% at the design operating frequency of 0.8 THz. Although the diffraction efficiencies for the frequencies 0.3, 0.5, and 1.2 THz with 9%, 19%, 9%, respectively, are considerably lower than the 44% for the design operating frequency 0.8 THz, the focusing performance of the TML still can be considered sufficient for applications in the entire frequency range from 0.3 to 1.2 THz.

 

Fig. 5 Characterization of the TML in its on-state. Experimental intensity distributions for different frequencies. (a–d) Intensity distributions of Ey on the focal planes for 0.3, 0.5, 0.8, and 1.2 THz, respectively. (e–h) Longitudinal intensity distributions of the cross-polarized field Ey on the yz plane for 0.3, 0.5, 0.8, and 1.2 THz, respectively.

Download Full Size | PPT Slide | PDF

Similarly, the performance of the thermally switchable TAG was investigated in the off-state at 20 °C and in the on-state at 70 °C. The results at 20 °C (not shown) confirm that the VO2 C-shaped slot antenna structures do not operate at temperatures below TC when the material is insulating. The metasurface of the TAG does not affect the wavefront of the THz radiation at these temperatures. Figure 6 shows the results concerning the performance of the TAG obtained at 70 °C when the TAG is thermally switched on. Figures. 6(a)-6(d) show the simulated cross-sectional intensity distributions at different propagation distances of z = 3.0, 6.0, 9.0, and 12.0 mm respectively and Figs. 6(e)-6(h) present the corresponding measured cross-sectional intensity distributions. The outer radius of the ring R0 and inner radius r0 of the ring at z = 3.0 mm are 1.5 mm and 1.0 mm, respectively, in agreement with the theoretical design values. The experimental results matched the simulation results well. The propagation of the THz ring-Airy beam on the xz plane is shown in Fig. 7. Figure 7(a) gives the simulation result and Fig. 7(b) describes the experimental result. It can be clearly seen that the radius of ring-Airy beam decreases as the propagation distance increases, and the beam intensity becomes concentrated in one focal point. In the vicinity of the focal spot, the intensity increases abruptly to the maximum value of the center. This sudden increase in intensity is the result of the transverse acceleration of the ring-Airy beam itself [42]. The FWHM of the focus at z = 6.0 mm is 459 μm. Beyond the focus, the THz ring-Airy beam is converted into a first-order non-diffractive Bessel beam. In contrast, the cross-section intensity distribution at 20 °C in the off-state at propagation distances of z = 6.0 mm is an unmodulated uniform THz spot (not shown in the figure). Thus, the experimental results clearly demonstrate the functioning of metasurface of the TAG according to the design as well as the thermal switching of the TAG function due to the phase transition of VO2.

 

Fig. 6 Characterization of the Airy beam generator (THz TAG) in its on-state. (a-d) Simulated cross-section intensity profiles at various propagation distances of (from left to right) z = 3.0, 6.0, 9.0 and 12.0 mm and (e-h) corresponding experimental results.

Download Full Size | PPT Slide | PDF

 

Fig. 7 Vertical view of the THz ring-Airy beam propagation on the xz plane. (a) Simulation result and (b) experimental result.

Download Full Size | PPT Slide | PDF

The temperature-driven IMT of VO2 is reversible and no aging effects occur. The IMT is accompanied by a structural phase transition from a monoclinic lattice structure (T < TC) to a tetragonal structure (T > TC). However, the structural phase transition involves only minor microscopic changes of the bond lengths between neighboring atoms. This microscopic process is not only reversible, but also very fast. It takes place on a time-scale of some hundred femtoseconds. Therefore, electrical or optical switching can be used to instead of thermal switching for enhancement of switching speed. The materials challenge to overcome is obtaining VO2 thin films which are also homogeneous on the mesoscopic scale (e.g., exhibit a sharp grain size distribution or experience a homogeneous strain due to the substrate) as the transition temperature as well as the hysteresis behavior are affected by such mesoscopic quantities. However, we have demonstrated that the VO2 C-shaped slot antenna units - when the VO2 is in its metallic phase - possess the capability to manipulate the amplitude and phase of the scattered THz light. VO2 antennas not only exhibit metal characteristics at temperatures T > TC, but also show localized surface plasmon resonances. Therefore, metasurface devices based on such VO2 microstructures exhibit the same light-field modulation capability as conventional gold metasurface devices. In addition, the VO2 based devices offer the possibility of thermally switching this capability on (T > TC) and off (T < TC). In the off-state, such metasurface devices show a high transmittance and hardly affect the THz beam profile. Thus, metasurface devices made of thermochromic VO2 possess a high potential for designing temperature-controlled light field devices in the future.

4. Summary

In summary, we have demonstrated the operation of two thermally switchable THz wavefront modulators based on the IMT of VO2. One device is a TML, which allows one to focus a THz wave into four focal points. The device operates in a broad frequency band from 0.3 to 1.2 THz. In its on-state (at 70 °C > TC), good focusing properties and a diffraction efficiency of 44% at the design operating frequency of 0.8 THz were determined. The second device is a TAG, which generates a THz ring-Airy beam in its on-state (at 70 °C > TC). Both modulators do not affect the THz beam in their off-state (at 20 °C < TC). Thus, dynamic control of the THz light field is feasible for both devices, which is of great significance for the development of actively modulated THz devices in the future.

Funding

National Natural Science Foundation of China (11774243, 11774246, 11404224, 11474206); Youth Innovative Research Team of Capital Normal University (008/19530050146); Beijing Youth Top-Notch Talent Training Plan (CIT&TCD 201504080); Capacity Building for Science & Technology Innovation - Fundamental Scientific Research Funds (008/19530050170, 008/19530050180, 008/18530500186, 025185305000/142); Beijing Talents Project (grant no. 2018A19); Scientific Research Base Development Program of the Beijing Municipal Commission of Education. DFG via GRK (Research Training Group) 2204 “Substitute Materials for sustainable Energy Technologies” and a DAAD/CSC exchange project.

References

1. C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011). [CrossRef]  

2. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007). [CrossRef]   [PubMed]  

3. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008). [CrossRef]   [PubMed]  

4. M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000). [CrossRef]  

5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef]   [PubMed]  

6. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]  

7. C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013). [CrossRef]  

8. Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013). [CrossRef]  

9. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]  

10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012). [CrossRef]   [PubMed]  

11. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012). [CrossRef]   [PubMed]  

12. W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016). [CrossRef]   [PubMed]  

13. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012). [CrossRef]   [PubMed]  

14. K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013). [CrossRef]  

15. J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013). [CrossRef]  

16. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975). [CrossRef]  

17. F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013). [CrossRef]   [PubMed]  

18. Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014). [CrossRef]   [PubMed]  

19. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013). [CrossRef]   [PubMed]  

20. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012). [CrossRef]   [PubMed]  

21. S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013). [CrossRef]  

22. P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund Jr., and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015). [CrossRef]  

23. L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016). [CrossRef]  

24. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010). [CrossRef]   [PubMed]  

25. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). [CrossRef]   [PubMed]  

26. F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018). [CrossRef]  

27. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017). [CrossRef]   [PubMed]  

28. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015). [CrossRef]   [PubMed]  

29. N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018). [CrossRef]  

30. E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016). [CrossRef]   [PubMed]  

31. Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018). [CrossRef]  

32. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018). [CrossRef]   [PubMed]  

33. J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016). [CrossRef]  

34. P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018). [CrossRef]  

35. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014). [CrossRef]   [PubMed]  

36. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013). [CrossRef]   [PubMed]  

37. J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016). [CrossRef]   [PubMed]  

38. J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016). [CrossRef]   [PubMed]  

39. B. Gu, G. Yang, and B. Dong, “General theory for performing an optical transform,” Appl. Opt. 25(18), 3197–3206 (1986). [CrossRef]   [PubMed]  

40. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010). [CrossRef]   [PubMed]  

41. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010). [CrossRef]   [PubMed]  

42. C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
    [Crossref]
  2. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
    [Crossref] [PubMed]
  3. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008).
    [Crossref] [PubMed]
  4. M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
    [Crossref]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  6. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  7. C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
    [Crossref]
  8. Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
    [Crossref]
  9. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  11. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  12. W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
    [Crossref] [PubMed]
  13. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
    [Crossref] [PubMed]
  14. K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
    [Crossref]
  15. J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
    [Crossref]
  16. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
    [Crossref]
  17. F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
    [Crossref] [PubMed]
  18. Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
    [Crossref] [PubMed]
  19. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
    [Crossref] [PubMed]
  20. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
    [Crossref] [PubMed]
  21. S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
    [Crossref]
  22. P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
    [Crossref]
  23. L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
    [Crossref]
  24. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  25. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  26. F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
    [Crossref]
  27. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
    [Crossref] [PubMed]
  28. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
    [Crossref] [PubMed]
  29. N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
    [Crossref]
  30. E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
    [Crossref] [PubMed]
  31. Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
    [Crossref]
  32. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref] [PubMed]
  33. J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
    [Crossref]
  34. P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
    [Crossref]
  35. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref] [PubMed]
  36. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref] [PubMed]
  37. J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
    [Crossref] [PubMed]
  38. J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
    [Crossref] [PubMed]
  39. B. Gu, G. Yang, and B. Dong, “General theory for performing an optical transform,” Appl. Opt. 25(18), 3197–3206 (1986).
    [Crossref] [PubMed]
  40. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
    [Crossref] [PubMed]
  41. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
    [Crossref] [PubMed]
  42. C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
    [Crossref]

2018 (5)

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

2017 (1)

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

2016 (6)

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

2015 (2)

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

2014 (3)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref] [PubMed]

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

2013 (8)

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

2012 (5)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

2011 (1)

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

2010 (3)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

2009 (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (2)

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

2007 (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

2000 (2)

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1986 (1)

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Abbott, D.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Aigouy, L.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Akalin, T.

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Averitt, R. D.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Baraniuk, R. G.

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Bessaudou, A.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Bhaskaran, M.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Bolivar, P. H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Cao, H. X.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Chan, C. H.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chan, W. L.

Chang, C. L.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chang, S.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Chang, S. J.

Chen, C. Y.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Chen, H. T.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chen, S.

Chen, Y.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Chernykh, I. A.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, J. W.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Conley, H. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Crunteanu, A.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Cui, Y.

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Dai, P. H.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Dierke, H.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Ding, F.

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Dong, B.

Earley, S.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Esaulkov, M. N.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Fan, F.

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Fan, K. B.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Feng, J. H.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Feng, S. F.

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Ferguson, B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Geng, K.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Gu, B.

Gu, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Gu, W. H.

Haglund, R. F.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Han, C.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Han, J.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Hao, L. Y.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Hatano, T.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

He, J.

He, J. W.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Hong, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Huang, W.

Huang, W. X.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Huang, X.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Humbert, G.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

In, S.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Iwasa, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Jacob, M.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Jagadish, C.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Jansen, C.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Jeong, J.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Jeong, Y. G.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Ji, Y. D.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Jin, B.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Kahng, B.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Kameshkov, O. E.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kan, Q.

Kang, L.

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

Kaul, A. R.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kavehrad, M.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Kawasaki, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Keiser, G. R.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Kim, B. J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. S.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. T.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, K.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Kim, N.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Knyazev, B. A.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Koch, M.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kou, W.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Kulikov, I. V.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kurner, T.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Kurz, H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kyoung, J. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Lee, D.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Lee, J. S.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. B.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Li, J.

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Li, J. N.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Li, L.

Liang, L.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Liang, S. X.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Lin, H. R.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Lin, Y.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Liu, H. B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Liu, M.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Liu, Q. H.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Lu, H.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Makarevich, A. M.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Markov, P.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Marvel, R. E.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Metcalfe, G. D.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Miller, K. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mitchell, A.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Mittleman, D. M.

Moller, C.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Moravec, M. L.

Mortier, M.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Nagel, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Nakano, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Oh, J. S.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Okuyama, D.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ono, S.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Padilla, W. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, N.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Parrott, E. P. J.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Plopper, G.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Powell, D. A.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Priebe, S.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Pun, Y. B.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Qiao, S.

Ramirez, J. G.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Ren, F. F.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Rhie, J.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Schuller, I. K.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Seren, H. R.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Shadrivov, I. V.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Shah, C. M.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Sharoni, A.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Sharovarov, D. I.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Shi, Q. W.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref] [PubMed]

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Shibuya, K.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Shkurinov, A. P.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Solyankin, P. M.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Song, Z.

Sriram, S.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Sun, H. C.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Sun, L.

Sun, W.

Sun, W. F.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Tan, H. H.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Taylor, A. J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Tian, Z.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Tokura, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Ung, B. S. Y.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, H. B.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Wang, K.

Wang, S.

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Wang, W. C.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Wang, X.

Wang, X. H.

Wang, X. K.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Weiss, S. M.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Wen, Q. Y.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Werner, D. H.

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

West, K. G.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Withayachumnankul, W.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wraback, M.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Wu, P. H.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Xie, Z.

Xie, Z. W.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Xu, N.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Xu, W. Z.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Yan, F.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Yang, G.

Yang, H.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Yang, Z.

Yang, Z. B.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Yang, Z. Q.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Ye, J.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

Ye, J. S.

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Yu, G.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zanaveskin, M. L.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Zhang, H. L.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Zhang, J. D.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Zhang, R.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Zhang, S.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Zhang, X. C.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Zhang, Y.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref] [PubMed]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

Zhang, Y. X.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Zhao, X. G.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Zhao, Y. C.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Zheng, Y.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Zhong, S. M.

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Zhou, X. J.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Zhou, Z.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Zimmers, A.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

ACS Photonics (3)

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Adv. Mater. (2)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Biosens. Bioelectron. (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

IEEE Trans. Terahertz Sci. Technol. (2)

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (2)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lasers Eng. (1)

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Plasmonics (1)

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Sci. Rep. (4)

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic image of the setup used for studying operational characteristics of the THz wavefront modulators as a function of temperature. (a) The device has no effect on the THz wave in its off-state (e.g., at T = 20 °C < TC). The THz device acts on the THz wave in its on-state (e.g., at T = 70 °C > TC) as (b) a multiple foci lens or (c) a Ariy beam generator. TTML: Temperature controlled THz multi-focus lens. TTAG: Temperature controlled THz Ariy beam gererator.
Fig. 2
Fig. 2 (a) Schematic image of a C-shaped slot antenna indicating the characteristic parameters. (b) Photograph of a part of TML. (c) Transmittance of a VO2 reference thin film sample during heating (red curve) and cooling (blue curve). The phase transition temperature TC is about 68 °C.
Fig. 3
Fig. 3 THz imaging system. HWP: half wavelength plate, PBS: polarization beam splitter, L: lens, PM: parabolic mirror, TTML: Temperature controlled THz multi-focus lens, BS: beam splitter, QWP: quarter-wavelength plate, WP: Wollaston polarizer.
Fig. 4
Fig. 4 Switching characteristics of the TML. Experimental intensity distributions on the nominal focal plane for 0.8 THz radiation at 20 °C in the off-state (a) and at 70 °C in the on-state (b), respectively. (c) Transverse intensity profiles on the focal plane recorded along the dashed lines in (b). The red and blue curves represent the experimental transverse intensities of Line A and Line B, respectively.
Fig. 5
Fig. 5 Characterization of the TML in its on-state. Experimental intensity distributions for different frequencies. (a–d) Intensity distributions of Ey on the focal planes for 0.3, 0.5, 0.8, and 1.2 THz, respectively. (e–h) Longitudinal intensity distributions of the cross-polarized field Ey on the yz plane for 0.3, 0.5, 0.8, and 1.2 THz, respectively.
Fig. 6
Fig. 6 Characterization of the Airy beam generator (THz TAG) in its on-state. (a-d) Simulated cross-section intensity profiles at various propagation distances of (from left to right) z = 3.0, 6.0, 9.0 and 12.0 mm and (e-h) corresponding experimental results.
Fig. 7
Fig. 7 Vertical view of the THz ring-Airy beam propagation on the xz plane. (a) Simulation result and (b) experimental result.

Metrics