Abstract

Optical coherence tomography (OCT) is a powerful interferometric imaging technique widely used in medical fields such as ophthalmology, cardiology and dermatology. Superluminescent diodes (SLDs) are widely used as light sources in OCT. Recently integrated chip-based frequency combs have been demonstrated in numerous platforms and the possibility of using these broadband chip-scale combs for OCT has been raised extensively over the past few years. However, the use of these chip-based frequency combs as light sources for OCT requires bandwidth and power compatibility with current OCT systems and have not been shown to date. Here we generate frequency combs based on chip-scale lithographically-defined microresonators and demonstrate its capability as a novel light source for OCT. The combs are designed with a small spectral line spacing of 0.21 nm which ensure imaging range comparable to commercial system and operated at non-phase locked regime which provide conversion efficiency of 30%. The comb source is shown to be compatible with a standard commercial spectral domain (SD) OCT system and enables imaging of human tissue with image quality comparable to the one achieved with tabletop commercial sources. The comb source also provides a path towards fully integrated OCT systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a non-invasive imaging modality that provides depth-resolved, high-resolution images of tissue microstructures in real-time. OCT has been widely demonstrated in medical fields such as ophthalmology and cardiology [1]. Superluminescent diodes (SLDs) are widely used as light sources in OCT. However, conventional SLDs suffer from the trade-off between the bandwidth and output power, mainly due to the limited gain bandwidth of the optical amplifier medium. While multiplexed SLDs mediate the tradeoff, the irregular shaped spectrum may arouse side lobes in the coherence function and thus reduce the image contrast.

Here we introduce a platform based on chip-scale lithographically-defined microresonators which breaks the tradeoff between bandwidth and output power of conventional SLD sources. These microresonators are fabricated using traditional microelectronic processes. When optically pumped with a single continuous-wave laser source they can generate broadband frequency combs, consisting of discrete lines with a frequency spacing determined by the geometry of the resonator. Such frequency combs have been demonstrated in numerous chip-scale platforms including silica [25], silicon [6,7], silicon nitride [810], aluminum nitride [11], crystalline fluorides [12,13], diamond [14] and AlGaAs [15] in the past decade. The parametric gain in these photonic structures enables broad optical bandwidths [8,16,17]. With the broad optical bandwidth (several hundreds of nanometers) generated by a single microresonator, frequency combs can equip OCT with the capability of achieving axial resolution below 1 µm which cannot be achieved with single SLD. In addition, the frequency combs enable simultaneous high output power and broad bandwidth, in contrast to the traditional SLD sources that suffer from power-bandwidth tradeoff. The high output power from the comb sources could offer better signal-to-noise ratio (SNR) at deeper regions of the tissue. This platform provides a path towards fully integrated low-cost OCT systems.

2. Device design

Our platform is based on ultra-low loss silicon nitride resonator generated frequency combs. Silicon nitride has been used extensively to generate microresonator frequency combs [810]. This resonator platform integrated with semiconductor amplifiers, has recently been shown to enable highly efficient broadband frequency comb generation on-chip [18]. Silicon nitride (Si3N4) combines the beneficial properties of a wide transparency range covering the entire OCT imaging window, a high nonlinear refractive index [19], and semiconductor mass manufacturing compatibility. In order to ensure high conversion efficiency, we design the resonator to operate at a non-phase locked state. Compared with phase locked single soliton combs with conversion efficiency of a few percent [20], non-phase locked combs can provide an order of magnitude higher conversion efficiency. Since the time scale of the amplitude noise typically reported in non-phase locked combs [21] is less than 100 ns, much faster than the OCT acquisition time scale, the fact that the combs are at a non-phase locked state is irrelevant to the OCT image quality (see Appendices).

In order to enable a large imaging range using the frequency combs as an OCT source of at least 2 mm (comparable with commercial OCT imaging range), we design the combs with a small spectral line spacing of 0.21 nm (corresponding to 38 GHz) using a microresonator with a perimeter of 1.9 mm much larger than traditional high confinement microresonators [9,22,23]. The small line spacing ensures image repetition range is well beyond the OCT imaging range to avoid artifacts. In order to achieve sufficient optical power build up and enable comb generation in such a large cavity [3,24], we rely on the extremely low loss platform recently demonstrated [25]. The ultra-low loss of 3 dB/m compensates for the large mode volume and enables frequency combs generation with 120 nm bandwidth. In order to generate the combs with broad bandwidth and high conversion efficiency, ideal for OCT imaging, we ensure that the combs generation process does not induce soliton states with characteristic hyperbolic secant spectrum, by tuning of the cavity resonance relative to the pump frequency using a microheater co-fabricated with the resonator [21,26,27]. Figure 1(A) shows the schematic of a microresonator and the mode simulation for the 730 × 1500 nm cross section which we are using. Figure 1(B) shows the fabricated on-chip resonator. Figure 1(C) shows the generated frequency comb spectra using this device. In order to generate frequency combs, we use a distributed feedback (DFB) laser which has a center wavelength of 1311.66 nm. We use an amplifier to compensate for the coupling losses. The output power from the amplifier is 252 mW. The comb power at the output of the waveguide is measured to be 42 mW (the pump power measured in the bus waveguide is 142 mW) which corresponds to 30% conversion efficiency (defined as the ratio between the sum of optical power in each comb line and the pump power).

 

Fig. 1. Device image and measured spectrum. (A) Schematic of a microresonator (B) Microscopy image of the silicon nitride on-chip microresonator. A platinum heater is fabricated over a large portion of the cavity and allows electric contact via the pads. (C) Measured frequency comb spectrum generated using the silicon nitride microresonators. Inset shows line spacing of 0.21 nm.

Download Full Size | PPT Slide | PDF

3. OCT imaging

Using the microresonator platform, we acquire OCT images of human tissue with chip-based frequency combs and show that the platform is compatible with a standard commercial spectral domain (SD) OCT system [28]. The schematic of the comb-based OCT setup is shown in Fig. 2. These images were acquired by using a standard SD-OCT system (Thorlabs Telesto I), where the SLD was simply replaced by the chip-based frequency combs. As the presence of the pump within the comb spectrum limits the dynamic range of the detection, we use a filtering setup based on a free-space grating and pin to fully attenuate the pump power. This filtering setup can be replaced by a customized fiber-based filter or an on-chip filter to miniaturize the size of the setup in the future. The maximum imaging range (in air) is 2.52 mm. The OCT spectrometer covers the spectral range from 1199.5 nm to 1367.0 nm. The incident light from the comb source is routed to the Michelson interferometer, and the backscattered signals from both interferometer arms are directed back to the spectrometer. Since the spectrometer of the commercial system is not optimized for our combs (the comb spacing is close but not identical to the resolution of this specific spectrometer). Therefore, the number of effective points contributed to the OCT signal is smaller than the number of pixels of the detector, which results in a faster decrease in sensitivity over the depth. This additional decrease in sensitivity can be eliminated by implementing a customized spectrometer whose sampling resolution is matched to the comb line spacing (see Appendices).

 

Fig. 2. Schematic of the comb-based OCT setup. Note that we directly plugged the comb source into the commercial system (Thorlabs Telesto I) to acquire images. The optical circulator is added to protect the commercial console. It shows that our platform is compatible with a standard commercial SD-OCT system.

Download Full Size | PPT Slide | PDF

Using the frequency combs combined with the commercialized SD-OCT system, we are able to acquire OCT images. The images are reconstructed in real-time from the raw spectral data generated by the system, following standard OCT signal processing steps, including background subtraction, linear-k interpolation, apodization, and dispersion compensation. The acquisition rate is 28 kHz currently limited by the CCD line rate. The total acquisition time of an image for the SLD and the chip comb images is the same (35 msec). The sensitivity of the OCT system is defined by the minimal sample reflectivity at which the signal to noise ratio reaches unity [29]. It is measured to be 98 dB at an A-line rate of 28 kHz with 0.5 mW sample arm power using the frequency comb source which is close to the theoretical prediction assuming the detection efficiency of 0.4.

Figures 34 show ex vivo OCT images of human breast and coronary artery samples imaged with our microresonator frequency comb source using a commercial SD-OCT system [28]. The human breast tissue was obtained from Columbia University Tissue Bank [30], and the human heart was obtained via the national disease research interchange [31]. Figure 3 compares images recorded using our microresonator frequency combs and a commercial SLD which has similar performance to the generated combs (SLD spectrum shown in Appendices). The axial resolution measured with the frequency comb source is 18 µm (in air) using axial point spread function which is in good agreement with the theoretical axial resolution of 16.3 µm. The Hematoxylin and Eosin (H&E) stained histology is provided as the reference for both the breast and two arteries in cardiovascular system, coronary artery and aorta. Different tissue types, including stromal tissue, adipose tissue and milk duct are delineated in both cross-sectional images (B-scans) by comparing with the corresponding histology analysis. The B-scan represents the cross-sectional image of the tissue, where the horizontal axis is the fast scan axis and the vertical axis is the depth profile (A-line). A volumetric scan (3D volume) is constructed by consecutive B-scans aligned along the slow scan axis. In our study, a cross-sectional image consists of 816 pixels horizontally covering a range of 4 mm, and 512 pixels vertically covering 2.52 mm (in air) in depth. A 3D volume consists of 816 B-scans.

 

Fig. 3. OCT images comparison. OCT volumetric scan of human breast tissue taken with (A) the frequency comb source, (B) a single SLD source, and OCT B-scans of the same tissue taken with (C) the frequency comb source (marked by the blue arrow) and (D) a single SLD source (marked by the yellow arrow), respectively, corresponded with (E) the H&E staining slide. Different features and tissue types, such as stromal tissue, adipose tissue and milk duct, are delineated in both B-scans. The ductal opening in (C) is not revealed in (D) may due to the sample dehydration.

Download Full Size | PPT Slide | PDF

Figure 4(A) shows a stitched frequency-comb-based OCT image of a human left anterior descending artery (LAD) in comparison with the H&E histology in Fig. 4(B). Figure 4(C) shows a stitched frequency-comb-based OCT image of a human aorta in comparison with the H&E histology in Fig. 4(D). OCT B-scans were stitched using the method previously used in cervical imaging [28]. In the red inset, a gradually decreasing trend of backscattering can be visualized within the transition region from a fibrous region to the media. The blue inset in Fig. 4 reveals a typical pattern of a fibrocalcific plaque, where a layer of signal-rich fibrous cap is on the top of calcium, a signal-poor region with a sharply delineated border. Importantly, overlying the fibrocalcific plaque region, we can see a transition from dense fibrous cap a region with a thinner fibrous cap for unstable plaque structure. The green inset in Fig. 4 shows the visualization of large calcification region, the deposit of calcium. Figure 3 and Figure 4 show the potential to visualize critical features within human breast and cardiovascular samples by integrating the chip-based frequency combs into an OCT system.

 

Fig. 4. Frequency-comb-based OCT images. Stitched frequency-comb-based OCT B-scans of human coronary artery (A) and aorta (C) with corresponding H&E histology of coronary artery (B) and aorta (D). Critical features are observed, including delineation of the fibrous cap, calcium, and layered structure of intima and media are depicted within OCT images.

Download Full Size | PPT Slide | PDF

4. Discussion and conclusion

In summary, we have demonstrated the viability of chip-based frequency comb platform as light sources for OCT systems a key step toward fully integrated chip-scale OCT systems. The different building blocks needed for an integrated OCT system, including a chip-scale beam splitter, the reference arm, the sampling arm and the spectrometer have already been demonstrated separately [3236] and can be integrated on the same chip as the microresonator enabling the miniaturization and lower cost of OCT systems. In addition to enabling highly integrated sources, Si3N4 microresonator combs exhibit a bandwidth that is determined by the waveguide geometry and can have tens of milliwatts output power [8,27]. In principle, the axial resolution is written as:

$$\Delta z = \frac{{2\ln (2)}}{\pi }\cdot \frac{{\lambda _c^2}}{{\Delta \lambda }},$$
where ${\lambda _c}$ is the central wavelength and $\Delta \lambda$ is the bandwidth of the frequency combs. The axial resolution is defined by the round-trip coherence length of the light source (rather than the coherence length of individual laser lines) and limited only by the central wavelength and bandwidth of the frequency combs. So it can be further improved to less than 1 µm by using broadband frequency combs. The imaging range of SD-OCT is defined as
$${z_{\max }} = \lambda _c^2/(4\cdot \delta {\lambda _s}),$$
Where $\delta {\lambda _s}$ is the spectral sampling interval. The spectral sampling interval becomes larger as the bandwidth of the spectrometer increases. Therefore, it will constrain the imaging range. This trade-off can be relieved by combining multiple spectrometers and stitching the spectrums [37].

In conclusion, with waveguide dispersion engineering and a spectrometer system designed for the combs, this platform could offer both high axial resolution and high SNR at deeper regions of OCT images. In the past few years there has been significant effort towards miniaturization for the purpose of clinical applicability using handheld OCT probes [3840]. With the benefit of such handheld probes and integration of frequency comb sources, a portable integrated OCT system could be achieved. This could potentially allow for OCT-based clinical diagnostics to be brought outside the hospital into low resource settings, where any sort of bulkiness could be an extreme hindrance.

Appendices

Comb-based OCT Signal Analysis and Noise Discussion

Non-phase locked combs are reported with higher amplitude noise than phase locked combs. However, the time scale for the amplitude noise (ns scale) is significant faster than OCT acquisition time scale. As a result, we did not observe any extra noise. Figure 5 shows the A-line signals extracted from OCT B-scan images of a mirror surface, taken with an SLD and the comb source, respectively. From the Fig. 5, one can see that the noise level of the comb source is comparable to the noise level of the SLD’s.

 

Fig. 5. A-line profiles of a mirror surface measured with SLD and comb sources, respectively. The SLD and comb source have the same acquisition rate. Single A lines are shown in gray and A lines obtained by 10x averaging (corresponding to a total of 357 µs acquisition time in current setting) are shown in blue.

Download Full Size | PPT Slide | PDF

The interferogram based on the optical frequency comb (OFC) source can be written as [41]:

$${I^{OFC}}\textrm {(k)} = \textrm {I(k)}\cdot \textrm {III}_{2\pi /\textrm{L}}^{OFC} \textrm {(k)} \otimes {\textrm {T}^{OFC}} \textrm {(k)},$$
where I(k) is the OCT interference signal, $\textrm {III}_{2\pi /\textrm {L}}^{OFC} \textrm{(k)}$ is the Dirac comb distribution in the spectral domain with comb line spacing $\Delta k = (2\pi /c)\cdot {\nu _{FSR}} = 2\pi /L$ and ${\textrm {T}^{OFC}} \textrm {(k)}$ is the normalized intensity profile of each comb line so that $\int {{\textrm {T}^{OFC}} \textrm {(k)}dk = 1}$. L is the round-trip cavity length in vacuum. For the ring-cavity based comb source, ${\textrm {T}^{OFC}} \textrm{(k)}$ has a Lorentzian line shape as:
$${\textrm {T}^{OFC}} \textrm{(k)} = \frac{1}{\pi }\frac{{{\Gamma _k}/2}}{{{k^2} + {{({\Gamma _k}/2)}^2}}},$$
where ${\Gamma _k} = (2\pi /c)\cdot ({\nu _0}/\textrm{Q})$ is the (FWHM) linewidth of the Lorentzian function in k-space, c is the speed of light in the cavity, and ${\nu _0}$ and Q are the resonance frequency and quality factor of the ring cavity, respectively. The magnitude of the OCT A-line signal can be obtained after Fourier transform of Eq. (3) as:
$${I_{OCT}} \textrm{(z)} = \gamma \textrm{(z)} \otimes {\textrm {III}_L} \textrm{(z)}\cdot \textrm{exp}( - {\Gamma _k}\pi \cdot |z |),$$
indicating the A-line signal naturally decays over the depth with a rate of ${\Gamma _k}\pi$, and the OCT depth profile $\gamma \textrm{(z)}$ repeats itself for every L in the spatial domain. For Si3N4 ring cavities with a Q-factor on the order of tens of millions, the linewidth of every comb line is very small, and thus the decay effect is negligible.

A typical interferogram of the comb source obtained after background subtraction and spectral shaping is shown in Fig. 6(A), where the interferogram is free of spurious features. Figure 6(B) shows the A-line signals extracted from OCT B-scan images of a mirror surface taken with the comb source. From the figures, one can see that the discrete nature of combs does not deteriorate the OCT images quality.

 

Fig. 6. (A) A typical interferogram of the comb source obtained after background subtraction and spectral shaping. (B) A-line profiles of a mirror surface measured with comb source. Single A lines are shown in gray and A lines obtained by 10x averaging (corresponding to a total of 357 µs acquisition time in current setting) are shown in blue.)

Download Full Size | PPT Slide | PDF

Sensitivity Fall-off Measurement

In SD-OCT, the spectral sampling is governed by the spectrometer. Due to the finite pixel response effect, the SNR is gradually degraded over the depth after the Fourier transform, which limits the imaging quality at longer depth. The coherence length of the individual comb lines, nevertheless, does not play a role in the image quality of SD-OCT. Conversely, in swept-source (SS) OCT, the coherence length of the individual laser affects the spectral sampling accuracy, and therefore plays a pivotal role in determining the sensitivity roll-off range. Figure 7 shows the sensitivity fall-off measurement for both comb source and the single SLD source. The fall-off is measured with a flat mirror placed at the focal plane of the sample arm while moving the mirror in the reference arm. We observed that the decrease of sensitivity along the depth is slightly higher for the comb source when compared to the SLD source of similar bandwidth. This is mainly due to the fact that the comb line spacing (0.21 nm) is a bit larger than the spectrometer resolution (0.17 nm). Therefore, the number of effective points contributed to the OCT signal is smaller than the number of pixels of the detector, which results in a larger decrease in sensitivity over the depth. This additional decrease in sensitivity can be eliminated with a customized spectrometer whose sampling resolution is matched to the comb line spacing.

 

Fig. 7. Sensitivity fall-off measurement for SLD source (A) and comb source (B). The 6-dB fall-off range (marked by the red arrows) for the SLD is around 1.9 mm, for comb source it is around 1.4 mm. The green arrows indicate the aliased signal. The higher noise floor around DC is an indication of higher noise due to the instability of fiber coupling scheme (edge-coupling using lensed fiber) and can be reduced by fiber packaging [42].

Download Full Size | PPT Slide | PDF

Measured SLD Spectrum

The measured spectrum from a commercial superluminescent diode with similar performance is shown in Fig. 8. This spectrum corresponds to a measured axial resolution of 24 µm (in air).

 

Fig. 8. Measured SLD spectrum. Superluminescent diode spectrum measured with optical spectrum analyzer.

Download Full Size | PPT Slide | PDF

Funding

Defense Advanced Research Projects Agency (DARPA) (N66001-16-1-4052); Air Force Office of Scientific Research (AFOSR) (FA9550-15-1-0303); National Science Foundation (NSF) (2016-EP-2693-A, CCF-1640108, ECCS-1542081); National Institute of Health (1DP2HL127776-01).

Acknowledgments

We would like to thank Charles Marboe for his histopathological assistance and Dr. Aseema Mohanty for helpful discussion. X.J. is also grateful to the China Scholarship Council for financial support. This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI).

References

1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef]  

2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef]  

3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef]  

4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef]  

5. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016). [CrossRef]  

6. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015). [CrossRef]  

7. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4(7), 707 (2017). [CrossRef]  

8. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011). [CrossRef]  

9. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684 (2017). [CrossRef]  

10. X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015). [CrossRef]  

11. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38(15), 2810 (2013). [CrossRef]  

12. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013). [CrossRef]  

13. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF 2 resonator,” Opt. Lett. 34(7), 878–880 (2009). [CrossRef]  

14. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014). [CrossRef]  

15. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3(8), 823 (2016). [CrossRef]  

16. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011). [CrossRef]  

17. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018). [CrossRef]  

18. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018). [CrossRef]  

19. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef]  

20. C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, “Nonlinear conversion efficiency in Kerr frequency comb generation,” Opt. Lett. 39(21), 6126–6129 (2014). [CrossRef]  

21. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012). [CrossRef]  

22. M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018). [CrossRef]  

23. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018). [CrossRef]  

24. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005). [CrossRef]  

25. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017). [CrossRef]  

26. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011). [CrossRef]  

27. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model,” Opt. Lett. 38(1), 37–39 (2013). [CrossRef]  

28. Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015). [CrossRef]  

29. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef]  

30. X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017). [CrossRef]  

31. Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016). [CrossRef]  

32. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648 (2013). [CrossRef]  

33. G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, and R. Baets, “Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography,” Biomed. Opt. Express 5(4), 1050 (2014). [CrossRef]  

34. L. Chang, N. Weiss, T. G. van Leeuwen, M. Pollnau, R. M. de Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm,” Opt. Express 24(12), 12635 (2016). [CrossRef]  

35. S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573 (2016). [CrossRef]  

36. M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

37. D. Cui, X. Liu, J. Zhang, X. Yu, S. Ding, Y. Luo, and L. Liu, “Dual spectrometer system with spectral compounding for 1-µm optical coherence tomography in vivo,” Opt. Lett. 39(23), 6727–6730 (2014). [CrossRef]  

38. F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016). [CrossRef]  

39. D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014). [CrossRef]  

40. G. L. Monroy and J. Won, “Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements,” J. Biomed. Opt. 22(12), 1 (2017). [CrossRef]  

41. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008). [CrossRef]  

42. T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, Eric J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref]
  3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref]
  4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref]
  5. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
    [Crossref]
  6. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
    [Crossref]
  7. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4(7), 707 (2017).
    [Crossref]
  8. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [Crossref]
  9. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684 (2017).
    [Crossref]
  10. X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
    [Crossref]
  11. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38(15), 2810 (2013).
    [Crossref]
  12. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
    [Crossref]
  13. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF 2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
    [Crossref]
  14. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
    [Crossref]
  15. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3(8), 823 (2016).
    [Crossref]
  16. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [Crossref]
  17. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
    [Crossref]
  18. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
    [Crossref]
  19. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref]
  20. C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, “Nonlinear conversion efficiency in Kerr frequency comb generation,” Opt. Lett. 39(21), 6126–6129 (2014).
    [Crossref]
  21. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [Crossref]
  22. M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
    [Crossref]
  23. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
    [Crossref]
  24. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
    [Crossref]
  25. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
    [Crossref]
  26. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
    [Crossref]
  27. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
    [Crossref]
  28. Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
    [Crossref]
  29. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref]
  30. X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
    [Crossref]
  31. Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
    [Crossref]
  32. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648 (2013).
    [Crossref]
  33. G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, and R. Baets, “Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography,” Biomed. Opt. Express 5(4), 1050 (2014).
    [Crossref]
  34. L. Chang, N. Weiss, T. G. van Leeuwen, M. Pollnau, R. M. de Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm,” Opt. Express 24(12), 12635 (2016).
    [Crossref]
  35. S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573 (2016).
    [Crossref]
  36. M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).
  37. D. Cui, X. Liu, J. Zhang, X. Yu, S. Ding, Y. Luo, and L. Liu, “Dual spectrometer system with spectral compounding for 1-µm optical coherence tomography in vivo,” Opt. Lett. 39(23), 6727–6730 (2014).
    [Crossref]
  38. F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
    [Crossref]
  39. D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
    [Crossref]
  40. G. L. Monroy and J. Won, “Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements,” J. Biomed. Opt. 22(12), 1 (2017).
    [Crossref]
  41. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [Crossref]
  42. T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, Eric J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
    [Crossref]

2018 (4)

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

2017 (5)

2016 (7)

T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, Eric J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3(8), 823 (2016).
[Crossref]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref]

L. Chang, N. Weiss, T. G. van Leeuwen, M. Pollnau, R. M. de Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm,” Opt. Express 24(12), 12635 (2016).
[Crossref]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573 (2016).
[Crossref]

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

2015 (3)

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

2014 (5)

2013 (4)

2012 (1)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

2011 (4)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

2005 (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

2004 (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

2003 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Agarwal, A. M.

Akca, B. I.

Alex, A.

Alic, N.

Amir, S. B.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Baets, R.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, and R. Baets, “Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography,” Biomed. Opt. Express 5(4), 1050 (2014).
[Crossref]

Bajraszewski, T.

Bao, C.

Barbosa, F. A. S.

Bolle, C.

M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

Bowers, J. E.

Bradu, A.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Bryant, A.

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Cardenas, J.

Cernat, R.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Chang, E.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref]

Chang, L.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chembo, Y. K.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Chen, S.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Coen, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[Crossref]

Cui, D.

Davenport, M.

de Ridder, R. M.

Del’Haye, P.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Demian, D.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Dietrich, P.-I.

Ding, S.

Drexler, W.

DuBose, T.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Duma, V.-F.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Dutt, A.

Eggleston, M. S.

M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

Erkintalo, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model,” Opt. Lett. 38(1), 37–39 (2013).
[Crossref]

Fainman, Y.

Farah, B.

M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

Farsiu, S.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Feldman, S.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref]

Fercher, A. F.

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fong, K. Y.

Fontaine, N.

M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

Freude, W.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573 (2016).
[Crossref]

Gaeta, A. L.

Gan, Y.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref]

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Griffith, A. G.

Grudinin, I. S.

Guo, H.

Hänsch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

Hansson, T.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hendon, C.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref]

Hendon, C. P.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref]

Herkommer, C.

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

Hibshoosh, H.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref]

Hitzenberger, C. K.

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huber, R.

Hulme, J.

Hutiu, G.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

Ikeda, K.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Izatt, J. A.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Ji, X.

Jung, H.

Kanger, J. S.

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

Kimerling, L. C.

Kippenberg, T. J.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

Komljenovic, T.

Koos, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573 (2016).
[Crossref]

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kowalczyk, A.

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kuyken, B.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

LaRocca, F.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Lauermann, M.

Leaird, D. E.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Leitgeb, R.

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

Levy, J. S.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Lipson, M.

Liu, A.

Liu, J.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

Liu, L.

Liu, X.

Liu, Y.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Lucas, E.

Lukashchuk, A.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

Luo, Y.

Maleki, L.

Marboe, C. C.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref]

Marin-Palomo, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Matsko, A.

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Michel, J.

Miller, S. A.

Monroy, G. L.

G. L. Monroy and J. Won, “Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

Morandotti, R.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Mossca, D. J.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Myers, K. M.

Nankivil, D.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Negrutiu, M. L.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Okawachi, Y.

Ottaviano, L.

Pardo, F.

M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

Pasquazi, A.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Peccianti, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Pfeiffer, M. H. P.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

Picqué, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

Podoleanu, A. G.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Pollnau, M.

Považay, B.

Pu, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Qi, M.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Randel, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Randle, H. G.

Razzari, L.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Roberts, S. P.

Roelkens, G.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

Safar, H.

M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

Saha, K.

Santis, C.

Saperstein, R. E.

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Schneider, S.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Semenova, E.

Sinescu, C.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

Spott, A.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Srinivasan, S.

Stanton, Eric J.

Stern, B.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Strekalov, D.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Subramaniam, V.

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sylvestre, T.

Szkulmowska, A.

Szkulmowski, M.

Tang, H. X.

Topala, F. I.

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Toth, C. A.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Trocha, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Tsay, D.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref]

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

Van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

van Leeuwen, T. G.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

Vink, J. Y.

Wabnitz, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Wang, J.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Wang, P.-H.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Wapner, R. J.

Weimann, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573 (2016).
[Crossref]

Weiner, A. M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Weiss, N.

Wen, Y. H.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Willner, A. E.

Wojtkowski, M.

Wolf, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Won, J.

G. L. Monroy and J. Won, “Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

Wörhoff, K.

Xie, G.

Xiong, C.

Xuan, Y.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Xue, X.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

Yan, Y.

Yang, K. Y.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Yao, W.

Yao, X.

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref]

Yi, X.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Yu, M.

Yu, N.

Yu, X.

Yurtsever, G.

Yvind, K.

Zabihian, B.

Zervas, M.

Zhang, C.

Zhang, J.

Zhang, L.

Zhang, X.

Zhao, Z.

Biomed. Opt. Express (2)

J. Biomed. Opt. (2)

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref]

G. L. Monroy and J. Won, “Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

J. Lightwave Technol. (1)

Lasers Surg. Med. (1)

X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Lasers Surg. Med. 49(3), 258–269 (2017).
[Crossref]

Nat. Commun. (3)

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6(1), 6310 (2015).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators,” Nat. Commun. 4(1), 1345 (2013).
[Crossref]

Nat. Photonics (5)

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Nature (2)

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Optica (4)

Phys. Rep. (1)

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mossca, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Phys. Rev. A (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Phys. Rev. Lett. (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref]

Proc. Inst. Mech. Eng., Part H (1)

D. Demian, V.-F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, G. Hutiu, A. Bradu, and A. G. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” Proc. Inst. Mech. Eng., Part H 228(8), 743–753 (2014).
[Crossref]

Science (4)

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Other (1)

M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, and H. Safar, “90 dB Sensitivity in a Chip-Scale Swept-Source Optical Coherence Tomography System,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Device image and measured spectrum. (A) Schematic of a microresonator (B) Microscopy image of the silicon nitride on-chip microresonator. A platinum heater is fabricated over a large portion of the cavity and allows electric contact via the pads. (C) Measured frequency comb spectrum generated using the silicon nitride microresonators. Inset shows line spacing of 0.21 nm.
Fig. 2.
Fig. 2. Schematic of the comb-based OCT setup. Note that we directly plugged the comb source into the commercial system (Thorlabs Telesto I) to acquire images. The optical circulator is added to protect the commercial console. It shows that our platform is compatible with a standard commercial SD-OCT system.
Fig. 3.
Fig. 3. OCT images comparison. OCT volumetric scan of human breast tissue taken with (A) the frequency comb source, (B) a single SLD source, and OCT B-scans of the same tissue taken with (C) the frequency comb source (marked by the blue arrow) and (D) a single SLD source (marked by the yellow arrow), respectively, corresponded with (E) the H&E staining slide. Different features and tissue types, such as stromal tissue, adipose tissue and milk duct, are delineated in both B-scans. The ductal opening in (C) is not revealed in (D) may due to the sample dehydration.
Fig. 4.
Fig. 4. Frequency-comb-based OCT images. Stitched frequency-comb-based OCT B-scans of human coronary artery (A) and aorta (C) with corresponding H&E histology of coronary artery (B) and aorta (D). Critical features are observed, including delineation of the fibrous cap, calcium, and layered structure of intima and media are depicted within OCT images.
Fig. 5.
Fig. 5. A-line profiles of a mirror surface measured with SLD and comb sources, respectively. The SLD and comb source have the same acquisition rate. Single A lines are shown in gray and A lines obtained by 10x averaging (corresponding to a total of 357 µs acquisition time in current setting) are shown in blue.
Fig. 6.
Fig. 6. (A) A typical interferogram of the comb source obtained after background subtraction and spectral shaping. (B) A-line profiles of a mirror surface measured with comb source. Single A lines are shown in gray and A lines obtained by 10x averaging (corresponding to a total of 357 µs acquisition time in current setting) are shown in blue.)
Fig. 7.
Fig. 7. Sensitivity fall-off measurement for SLD source (A) and comb source (B). The 6-dB fall-off range (marked by the red arrows) for the SLD is around 1.9 mm, for comb source it is around 1.4 mm. The green arrows indicate the aliased signal. The higher noise floor around DC is an indication of higher noise due to the instability of fiber coupling scheme (edge-coupling using lensed fiber) and can be reduced by fiber packaging [42].
Fig. 8.
Fig. 8. Measured SLD spectrum. Superluminescent diode spectrum measured with optical spectrum analyzer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ z = 2 ln ( 2 ) π λ c 2 Δ λ ,
z max = λ c 2 / ( 4 δ λ s ) ,
I O F C (k) = I(k) III 2 π / L O F C (k) T O F C (k) ,
T O F C (k) = 1 π Γ k / 2 k 2 + ( Γ k / 2 ) 2 ,
I O C T (z) = γ (z) III L (z) exp ( Γ k π | z | ) ,

Metrics