Abstract

A metasurface is a planar optical device that controls the phase, amplitude, and polarization of light through subwavelength-scale unit elements, called meta-atom. The tunability of plasmonic vortex lens (PVL) which generates surface plasmon polaritons (SPPs) carrying orbital angular momentum can be improved by using meta-atom. However, conventional PVLs exhibit nonuniform field profiles according to the incident polarization states owing to the spin-orbital interaction (SOI) effect observed during SPP excitation. This paper describes a method of compensating for SOI of PVL by using the geometric phase of distributed nanoslits in a gold film. By designing the orientation angles of slit pairs, the anti-phase of the SOI effect can be generated for compensatory effect. In addition, polarization-independent PVLs are designed by applying a detour phase based on the position of the slit pairs. PVLs for center-, off-center-, and multiple-focus cases are demonstrated and measured via a near-field scanning microscope.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A metasurface is an artificially designed planar optical device consisting of subwavelength-scale unit cells called meta-atoms. Metasurfaces have been widely used to control a waveform of transmitted or reflected light by delaying the spatial phase of incident light via the geometric phase formed by the shape of the unit-cells [1–3]. Their compactness and simple design principle mean that metasurfaces have been applied across a range of fields, including digital holograms [4–7], perfect light absorbers [8–11], ultrathin lenses [12–14], and orbital angular momentum (OAM) generators [15–17]. Moreover, metasurfaces exhibit different performance according to the anisotropy of their meta-atoms. For example, rectangular, v-shaped, and c-shaped meta-atoms have been widely used in applications that require strong polarization sensitivity, such as dual-polarity metalenses [18], waveplates [19], multiplexing optical vortices [20], and multiplexing holograms [21,22]. In contrast, when isotropic meta-atoms are used, it was reported that metasurfaces can easily achieve polarization-independent characteristics. Square [23,24] and cylinder-shaped [25] meta-atoms are most frequently used for applications that require polarization independence.

Plasmonic lenses (PLs) or plasmonic vortex lenses (PVLs) are often used to make a focus or vortex in the near field by guiding surface plasmon polaritons (SPPs) [26]. The plasmonic vortex, which has a ring-shaped profile and helical wavefront, has generated significant interested because of its compactness and the tunability of optical torque generation. As PVLs can generate strong SPP fields at the interface between a dielectric and a metal, numerous applications such as optical tweezers [27] and miniature polarization analyzers [28,29] have been proposed. Conventional PVLs, consisting of several continuous slits (e.g., spiral slits [30–32], concentric slits [33–36], and diffractive slit patterns [37]) or nanohole array [38], have been used to generate various sizes of vortices. In conventional PVLs, the topological charge (lv) of the vortex can be expressed by combining the OAM charge affected by spin-orbital interactions (±ls) and the radial shift of the slit pattern (lr).

Recently, a method was introduced that allows the plasmonic focus to be multiplexed through circular polarized states with the Pancharatnam–Berry phase [39,40]. The focus can be designed by tilting the angle or shifting the position of rectangular nano-apertures, corresponding to polarization-dependent and -independent phases, respectively. Another study has reported that, instead of using continuous slits, distributed nanoslits along contour-like double rings generate a high-order plasmonic vortex if the nanoslit orientations are suitably controlled [41]. The net topological charge of the vortex generated by this device was expressed by ±ls(2n1), where n is the total number of rotations of the nanoslits’ self-orientation over one cycle of revolution. Furthermore, combining distributed nanoslit configuration with a radial shift in the slit pattern has been also published [42].

Although conventional PVLs have the advantage of switching the topological charge by changing the polarization of incident light, their use as practical devices is often limited by their polarization sensitivity. Research that removes the linear polarization-dependence of PVL has been reported, but the fixed length and width of nanoslit, as well as the thickness of the metal, restrict the freedom of tuning of PVL [43]. However, it is difficult to completely get rid of the polarization-dependence of PVLs because PVLs must have some spin-orbit interaction (SOI), which is the interaction between the photon’s orbit and its intrinsic spin state [44]. As SPPs must be excited in the direction perpendicular to the long axis of the nanoslits, they will have different phase excitation characteristics depending on the polarization of the incident light [45]. Therefore, PVLs are inevitably accompanied by SOI, which means that the different plasmonic field profiles depend on the photon’s spin state. For this reason, it is quite difficult to generate a plasmonic focus or vortex for incident light of arbitrary polarization state without any field distortion.

In this article, we propose a method that eliminates the polarization dependence of conventional PVLs by perfectly compensating the SOI with the geometric phase of distributed nanoslits. Figure 1 shows a conceptual schematic of the proposed structure. To remove the polarization dependency, we controlled the orientation of the distributed nanoslits of the PVLs. To provide an experimental demonstration, we deposited thin gold film with a thickness of 150 nm on SiO2 and fabricated a nanoslit pattern using a focused ion beam (FIB). By measuring the intensity profile using a near-field scanning optical microscope (NSOM), it has been demonstrated that manufactured PVLs exhibit identical field profiles for circular polarized, linear polarized, and even arbitrarily polarized incident light. Although the polarization of the incident light changed, the intensity profile maintained the form of the same-order Bessel function of the first kind, with the exception of the unique polarization state when the SPP field profiles perfectly disappeared inside the PVL. Through experiments and simulations based on dipole modeling methods [46], we show that the proposed technique can be applied to various continuous-slit PVLs designed for center-, off-center-, and multiple-focus vortex generations [47].

 figure: Fig. 1

Fig. 1 (a) Schematic of the polarization-independent plasmonic vortex generator. (b) Illustration of the system coordinates and locations of nanoslits.

Download Full Size | PPT Slide | PDF

2. Basic theory and design principle

In previous research, distributed nanoslits located along the double-lined ring generated a high-order plasmonic vortex [41]. Thus, we used a similar design for our PVLs under the following conditions. Figure 1(b) illustrates the geometric parameters of the nanoslit pairs.

The size of nanoslit and period of nanoslit pair were carefully designed considering the SPP transmittance and phase uniformity. Reducing the size and period of nanoslit will improve phase continuity, but exponentially decrease the transmittance and degrade aspect ratio of nanoslit due to fabrication limits. On the other hand, increasing period results to the nonuniform SPP generation, it has been known that the distance between adjacent cells should be shorter than an effective wavelength of SPP in order to avoid in-plane diffraction. For these reasons, we chose the length (L) and width (W) of the nanoslit to 300 nm and 60 nm, respectively. The period of the meta-atoms in the azimuthal direction (P) is 1.5 times of the slit length. A pair of nanoslits is considered to be a unit meta-atom; the difference in radius and orientation angle between the inner and outer slits is d=λSPP/2 and π/2, respectively, where λSPP is the effective wavelength of the SPP mode at the metal–air interface (λSPP=968.8nm in our simulations and experiments). To minimize the interference of the SPPs excited by the inner slits and outer slits, the azimuthal locations of the inner and outer slits are shifted by P/2 with respect to each other [45].

In designing a PVL with meta-atoms, let us consider the position of the inner-line nanoslits, as the position of the outer-line nanoslits can then be automatically determined. To calculate the distributed slit patterns, we assume a virtual source of diverging SPPs at the origin. Next, we define a virtual concentric band with an inner radius of ρ0 and an outer radius of ρ0+λSPP. The nanoslit locations N are set along the contours that satisfy the following condition:

N={(ρ,θ)|ϕ0(ρ,θ)=2πq&ρ0ρ<ρ0+λSPP},
where q is an integer and ϕ0(ρ,θ)=kSPPρ for the case of simple focus generation at the origin, which can be further expanded. The SPPs excited in the nanoslits are almost identical to dipoles. By replacing each nanoslit on the PVL with a dipole source that oscillates perpendicular to the nanoslit direction, the z-directional electric field Ez near the origin can be written as
Ez=eαzA0e±j(2n1)θ'ejkSPP(ρ0ρcos(θθ'))dθ'J±(2n1)(kSPPρ),
where n is the rotation factor that indicates how fast the orientation angle of the nanoslits changes along the azimuthal direction compared to the actual azimuthal position. In addition, α is the attenuation coefficient of the SPPs in the z-direction, and ρ,θ,z denote the radial, azimuthal, and z-directional position in cylindrical coordinates on the PVL, respectively. ρ0, θ' are the radius of the inner ring and the azimuthal angle of the inner dipole source along the PVL contour, respectively. J±(2n1)(kSPPρ) signifies the ±(2n1)-order Bessel function, where ±(2n1) indicates the topological charge whose sign is determined by LCP (plus) or RCP (minus). Equation (2) indicates that faster self-rotation of the nanoslits generates a higher-order vortex. As the polarized states of the incident light strongly affect the topological charge, due to the property that SPP is always excited perpendicular to the slits, Ezcannot avoid the effect of the spin angular momentum (SAM) when n is not equal to 0.5. In other words, SAM does not affect Ez when we set n to be 0.5, as ±(2n1) then becomes zero. If we substitute n = 0.5 into Eq. (2), we obtain
Ez=eαzA0ejkSPP(ρ0ρcos(θθ'))dθ'J0(kSPPρ).
This equation shows that the geometric phase of the nanoslit pair can compensate for the SOI caused by the circular shape of the PVL, as shown in Fig. 2(a). When LCP light illuminates the sample (left side of Fig. 2(a)), SOI may occur in the counterclockwise direction, whereas the geometric phase occurs in the clockwise direction along the contour of the PVL. In contrast, for the case of RCP light illumination, the SOI phase and geometric phase change their direction of rotation, as shown on the right of Fig. 2(a). As the geometric phase has the opposite direction of the phase resulting from SOI, the phase of the excited SPP fields at every position inside the PVL are unchanged for two circular polarization states, and they are proportional to the 0th-order Bessel function of the first kind.

 figure: Fig. 2

Fig. 2 (a) Schematic showing the principle of the proposed structure when LCP (red) and RCP (blue) illuminate the sample, respectively. Green curve indicates the direction of angular momentum caused by geometric phase of nanoslits. (b) SEM image of 4th-order polarization-independent PVL. (c) Experimental setup scheme for measuring the plasmonic vortex.

Download Full Size | PPT Slide | PDF

One can simply infer that any linear combination of EzLCP and EzRCP will have the same field profile, given by

Eztotal=aLCPEzLCP+aRCPEzRCPJ0(kSPPρ),
where aLCP and aRCP are the ratios of LCP and RCP, respectively. Therefore, Eztotal always has the form of a 0th-order Bessel function when the incident light has arbitrary polarization. In particular, the SPP fields perfectly vanish when aLCP=aRCP. This specific condition will be experimentally demonstrated in the next section.

The proposed design method can be adapted to any kind of detour phase that is independent of the geometric phase of the distributed nanoslits [37]. For example, a polarization-independent PVL (PI-PVL) can be designed by adding angular orbital momentum to the detour phase ϕl(ρ,θ)=kSPPρ+lvθ. Similar to Eq. (1), by setting the nanoslit positions to satisfy ϕl(ρ,θ)=2πq and ρ0ρρ0+λSPP, the Ez field generated by the PI-PVL can be written as

Ez=eαzA0ejlvθ'ejkSPP(ρ0ρcos(θθ'))dθ'Jlv(kSPPρ).
Unlike Eq. (2), Ez is proportional to the lv-order Bessel function of the first kind, rather than the 0th-order function.

Furthermore, the SPP vortex at an arbitrary location can be designed to have polarization independence by applying a diffractive detour phase at the position of the nanoslit pairs. To represent this phase simply, we use Cartesian coordinates in this case. To extract the SPP phase distributions, we assume there is a virtual source generating spiral SPPs located at (xc,yc). The diverging phase of the z-directional electric field from the virtual SPP focus can then be expressed as

ϕ(x,y)=kSPP(xxc)2+(yyc)2+lvtan1(yycxxc).
By extracting the position of the nanoslits using the method described above, a PI-PVL generating a vortex of arbitrary order at any designed position can be constructed.

3. Simulation method and experimental setup

To calculate the phase and intensity profiles inside the PVLs, dipole modeling based on a dyadic Green’s function was used [46]. The wavelength of the incident light was set to 980 nm. When ρ0 is small, the optical vortex may be distorted under the rough phase discretization caused by the large phase difference between the nearby nanoslits. If ρ0 is too large, the entire shape of the PVL cannot be measured through NSOM, which has a maximum scanning range of 33×33 μm. Hence, we set ρ0=8 μm for the 0th-order PL and higher-order PVLs. Therefore, the total size of the PI-PVL for generating a 4th-order vortex was approximately 18×18 μm, as shown in Fig. 2(b). For the case of multiple-foci PVL, the minimal and maximal radii of the PVL for left-side focus at (−2 μm, 0 μm) were designed to be 8λSPP (7.750 μm) and 10λSPP (9.688 μm), whereas those for the right-side focus at (2 μm, 0 μm) were designed to be 8λSPP (7.750 μm) and 9λSPP (8.719 μm), respectively. The numbers of nanoslits for the PVL without SOI, center-focusing PI-PVL, off-center focus PI-PVL, and multiple-foci PVL were set to 224, 232, 234, and 488, respectively.

To manufacture the proposed structure, thin gold film of 150-nm thickness was deposited on a SiO2 substrate using a thermal evaporator (MHS-1800). The nanoslits were patterned by FIB (FEI Company, Versa3D LoVac) under 30 kV and 1.5 pA. As shown in Fig. 2(c), a 980-nm-wavelength laser source passed through the half-wave and quarter-wave plates to control the polarized states of the incident light before illuminating the backside of the sample, and the polarization state was precisely measured by a polarimeter module (Thorlabs, PAX5710IR-T). The SPP field profiles after being transmitted through the distributed nanoslits were measured by NSOM (Nanonics, Multiview 4000).

4. Results and discussion

First of all, we simulated two simple structures to exhibit polarization-dependence of conventional PVLs [33,38]. The continuous slit PVL generates different order vortices of ±1 at the origin for two circular polarizations due to SOI effect, as shown in Figs. 3(b) and 3(c). The polarization-dependence appears more clearly when the linear polarized light is incident, as shown in Figs. 3(d) and 3(e). The discontinuous type PVL consisting of 112 nano-holes array also shows the same polarization dependent characteristics as the continuous slit PVL as shown in Figs. 3(g)–3(j).

 figure: Fig. 3

Fig. 3 Schematic of (a) a continuous slit PVL and (b)–(e) Ezfield amplitude calculated by using FDTD simulations for circular and diagonal linear polarizations. For the case of PVL consisting of nano-holes array; (f) Schematic and (g)–(j) field distributions for each polarization are shown, respectively. The phase nearby the center is inserted in the left corner insets.

Download Full Size | PPT Slide | PDF

To show the proposed SOI compensation characteristics, we compared two nanoslit-distributed PLs having different rotation factors of n = 1 (Figs. 4(a)–4(e)) and n = 0.5 (Figs. 4(f)–4(j)). For n = 1, the electric field intensity profiles exhibit an SOI-affected distribution, as shown in Figs. 4(b)–4(e); this is the same response as given by the conventional PVL. The SPP intensity profiles of LCP (Fig. 4(b)) and RCP (Fig. 4(c)) are difficult to distinguish, but small dark spots can be clearly seen, especially in Fig. 4(b), which is a 1st-order Bessel function. In Fig. 4(b), measured radius of the dark spot with 350 nm has been obtained, and the shape of the measured intensity profile greatly well-matched to 1st-order Bessel function. The small imperfection of azimuthal symmetry in experimental results may be caused by various degradation issues such as anisotropic NSOM tip shape, anisotropic scanning route, and imperfect slit fabrication. Polarization-dependence for the case of n = 1 is revealed more clearly in the intensity profiles of 135° (Fig. 4(d)) and 45° (Fig. 4(e)) linear polarizations, because SPPs are only excited along the direction of the incident linear polarization.

 figure: Fig. 4

Fig. 4 FIB images, Ezfield distribution calculated by dipole modeling (upper) and NSOM images (lower) for various polarization incidences: (a)–(e) show (a) FIB image and (b)–(e) intensity profiles of the PVL with SOI (n = 1) whereas (f)–(j) show (f) FIB image and (g)–(j) intensity profiles of PVL without SOI (n = 0.5). The inset in each figure is a numerically calculated phase profile near the focus.

Download Full Size | PPT Slide | PDF

However, when the SOI compensation is applied (n = 0.5), the field intensity profiles exhibit almost the same optical responses for LCP, RCP, and even for the two linearly polarized incident lights, as shown in Figs. 4(g)–4(j). For every case of incident polarization, the intensity profile has the same form as the 0th-order Bessel function, although the intensity varies. By observing the simulation results near the focus, which is depicted in the inset of each figure, it is apparent that the phases of the focus did not change with the polarization state. Therefore, we have shown that the SOI can be perfectly compensated by using the appropriate geometric phase of the distributed nanoslits.

Similar to the case of 0th-order PVLs, those for higher-order plasmonic vortices can also be designed to be polarization-independent. Figures 5(b)–5(e) show NSOM images for center-located 4th-order PI-PVLs under various polarization states. Figures 5(g)–5(j) show images for off-center 4th-order PI-PVL. As shown in Figs. 5(b)–5(d), for the three representative polarizations of LCP, RCP, and x-polarization, the same vortex order can be maintained. The vortex order of off-center-focus PI-PVLs is also the same for LCP, RCP, and x-polarization, although the location of the vortex is shifted, as shown in Figs. 5(g)–5(i). Interestingly, destructive interference occurs for both types of PVLs when y-polarized light illuminates the sample, as shown in Figs. 5(e) and 5(j). To explain the phenomenon whereby the near-field patterns perfectly disappear, we use the Jones matrix. The Jones matrix of the y-polarization state can be described by Jy=(JLCPJRCP)/2j. The intensity becomes zero when the magnitude and phase of the SPPs generated by LCP and RCP are equal. As predicted in the simulations, the overall intensity values may vary as the polarization changes, but the shape of the vortex will not change. The intensity of the PVL can perfectly vanish under y-polarization, although the order of the plasmonic vortex will be maintained, as shown in the numerically calculated phase profiles (insets of Figs. 5(e) and 5(j)).

 figure: Fig. 5

Fig. 5 FIB images, Ez field distribution calculated by dipole modeling (upper) and NSOM images (lower) of each polarization state for two type of 4th-order PI-PVL: (a) FIB image and (b)–(e) intensity profiles of center-focus PI-PVL. (f) FIB image (g)–(j) intensity profiles of off-center-focus PI-PVL. The inset in each figure is a phase profile. The intensity profiles have been rotated 45° because NSOM scanned the samples diagonally. As the phase and amplitude of plasmonic vortices are perfectly matched between LCP and RCP, the interference pattern disappears when y polarized light is incident, as shown in (e) and (j).

Download Full Size | PPT Slide | PDF

Based on the proposed concept, we can simultaneously design polarization-independent and -dependent plasmonic vortices in multiple-foci PVL; the results of numerical calculations are shown in Fig. 6. We combined one PVL with SOI and another PVL without SOI. The method for determining the position of the nanoslits followed previously reported research [47]. The plasmonic vortex without SOI at (−2 μm, 0 μm) was found to have an invariant topological charge lvLeft=2 for arbitrary polarized light. In contrast, the plasmonic vortex with SOI at (−2 μm, 0 μm) had topological charges of lvRight=0 and lvRight=2 under incident LCP (Fig. 6(a)) and RCP (Fig. 6(b)), respectively. The plasmonic vortex without SOI exhibits an invariant phase and amplitude profile, except for y-polarization, and the vortex may vanish in the y-polarization state. As shown in Fig. 6(d), the field profiles vanish in the SOI-compensated case when specific polarization illuminates the sample, although the SPPs generated from conventional PVLs are maintained. We expect these characteristics of the proposed PVLs to be applied to the selective switching of plasmonic vortices.

 figure: Fig. 6

Fig. 6 Simulated intensity profiles of multiple-foci PVL that can simultaneously generate plasmonic vortices without SOI and with SOI for (a) LCP, (b) RCP, (c) x-polarization, and (d) y-polarization.

Download Full Size | PPT Slide | PDF

5. Conclusion

In summary, we have proposed a method for generating polarization-independent plasmonic vortices by compensating for SOI using the geometric phase of nanoslits. Theoretically, we have shown that the meta-atom consisting of a nanoslit pair can perfectly compensate the SOI. By tilting the orientation angle of the meta-atoms, the geometric phase can be controlled to be exactly the opposite of the SOI effect. PVLs without SOI were shown to generate plasmonic vortices with an identical topological charge for LCP, RCP, linear polarization, and even for any arbitrary polarization. Moreover, the proposed method can be applied to conventional circular PVLs such as ring-type, center-focus, and off-center-focus. To demonstrate this, we designed a PI-PVL that can focus plasmonic vortices at the designed position through distributed nano-apertures. Through simulations and experiments, we demonstrated that the intensity profiles of the plasmonic vortices were matched to same-order Bessel functions for LCP, RCP, and x-polarized incident light. Interestingly, a singularity occurred in the case of y-polarization because LCP and RCP light excites identical SPP amplitude and phase profiles. In addition, we simulated a multiple-foci PVL that simultaneously generates plasmonic vortices with and without SOI at different locations. We believe that this method could be used in various novel applications such as super-resolution microscopy, optical tweezers, ultra-compact OAM generators, and nanoscale optical polarization analyzers.

Funding

National Research Foundation of Korea (NRF) Korea government Ministry of Science and ICT (No. 2017R1C1B2003585 and 2017R1A4A1015565).

Acknowledgment

The authors thank Mr. Yohan Lee, Seok Woo Park for fabricating sample, Young-Gyu Bae, Woo-Young Choi for simulation and experiments, and the two anonymous reviewers for the constructive comments and suggestions.

References

1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef]   [PubMed]  

2. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014). [CrossRef]  

3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014). [CrossRef]   [PubMed]  

4. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013). [CrossRef]  

5. L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013). [CrossRef]  

6. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015). [CrossRef]   [PubMed]  

7. G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018). [CrossRef]   [PubMed]  

8. H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016). [CrossRef]  

9. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014). [CrossRef]   [PubMed]  

10. M. Kang, F. Liu, T.-F. Li, Q.-H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013). [CrossRef]   [PubMed]  

11. Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016). [CrossRef]  

12. T. Roy, E. T. F. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013). [CrossRef]   [PubMed]  

13. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016). [CrossRef]   [PubMed]  

14. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016). [CrossRef]   [PubMed]  

15. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014). [CrossRef]   [PubMed]  

16. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012). [CrossRef]  

17. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014). [CrossRef]  

18. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012). [CrossRef]   [PubMed]  

19. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012). [CrossRef]   [PubMed]  

20. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016). [CrossRef]   [PubMed]  

21. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016). [CrossRef]   [PubMed]  

22. E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7(1), 12533 (2016). [CrossRef]   [PubMed]  

23. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016). [CrossRef]   [PubMed]  

24. S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017). [CrossRef]   [PubMed]  

25. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015). [CrossRef]  

26. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008). [CrossRef]   [PubMed]  

27. W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014). [CrossRef]   [PubMed]  

28. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009). [CrossRef]   [PubMed]  

29. W. Chen, R. L. Nelson, and Q. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012). [CrossRef]   [PubMed]  

30. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009). [CrossRef]   [PubMed]  

31. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010). [CrossRef]   [PubMed]  

32. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010). [CrossRef]   [PubMed]  

33. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef]   [PubMed]  

34. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef]   [PubMed]  

35. Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009). [CrossRef]   [PubMed]  

36. G. Rui, Q. Zhan, and Y. Cui, “Tailoring optical complex field with spiral blade plasmonic vortex lens,” Sci. Rep. 5(1), 13732 (2015). [CrossRef]   [PubMed]  

37. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008). [CrossRef]   [PubMed]  

38. P. A. Brandão and S. B. Cavalcanti, “Optical spin-to-orbital plasmonic angular momentum conversion in subwavelength apertures,” Opt. Lett. 38(6), 920–922 (2013). [CrossRef]   [PubMed]  

39. S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015). [CrossRef]   [PubMed]  

40. G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016). [CrossRef]   [PubMed]  

41. S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015). [CrossRef]  

42. Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017). [CrossRef]   [PubMed]  

43. H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018). [CrossRef]  

44. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015). [CrossRef]  

45. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013). [CrossRef]   [PubMed]  

46. S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015). [CrossRef]  

47. H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  4. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
    [Crossref]
  5. L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
    [Crossref]
  6. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  7. G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
    [Crossref] [PubMed]
  8. H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
    [Crossref]
  9. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  10. M. Kang, F. Liu, T.-F. Li, Q.-H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
    [Crossref] [PubMed]
  11. Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
    [Crossref]
  12. T. Roy, E. T. F. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
    [Crossref] [PubMed]
  13. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  14. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
    [Crossref] [PubMed]
  15. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  16. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
    [Crossref]
  17. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  18. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref] [PubMed]
  19. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  20. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref] [PubMed]
  21. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
    [Crossref] [PubMed]
  22. E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7(1), 12533 (2016).
    [Crossref] [PubMed]
  23. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
    [Crossref] [PubMed]
  24. S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
    [Crossref] [PubMed]
  25. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
    [Crossref]
  26. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  27. W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
    [Crossref] [PubMed]
  28. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [Crossref] [PubMed]
  29. W. Chen, R. L. Nelson, and Q. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012).
    [Crossref] [PubMed]
  30. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
    [Crossref] [PubMed]
  31. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
    [Crossref] [PubMed]
  32. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
    [Crossref] [PubMed]
  33. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  34. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  35. Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
    [Crossref] [PubMed]
  36. G. Rui, Q. Zhan, and Y. Cui, “Tailoring optical complex field with spiral blade plasmonic vortex lens,” Sci. Rep. 5(1), 13732 (2015).
    [Crossref] [PubMed]
  37. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
    [Crossref] [PubMed]
  38. P. A. Brandão and S. B. Cavalcanti, “Optical spin-to-orbital plasmonic angular momentum conversion in subwavelength apertures,” Opt. Lett. 38(6), 920–922 (2013).
    [Crossref] [PubMed]
  39. S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
    [Crossref] [PubMed]
  40. G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
    [Crossref] [PubMed]
  41. S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
    [Crossref]
  42. Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
    [Crossref] [PubMed]
  43. H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
    [Crossref]
  44. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  45. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  46. S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
    [Crossref]
  47. H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
    [Crossref]

2018 (2)

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

2017 (2)

Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
[Crossref] [PubMed]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

2016 (9)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7(1), 12533 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

2015 (8)

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

G. Rui, Q. Zhan, and Y. Cui, “Tailoring optical complex field with spiral blade plasmonic vortex lens,” Sci. Rep. 5(1), 13732 (2015).
[Crossref] [PubMed]

S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

2014 (6)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (6)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

M. Kang, F. Liu, T.-F. Li, Q.-H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref] [PubMed]

T. Roy, E. T. F. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
[Crossref] [PubMed]

P. A. Brandão and S. B. Cavalcanti, “Optical spin-to-orbital plasmonic angular momentum conversion in subwavelength apertures,” Opt. Lett. 38(6), 920–922 (2013).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

2012 (4)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

W. Chen, R. L. Nelson, and Q. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (2)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

2009 (4)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[Crossref] [PubMed]

2005 (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Almeida, E.

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7(1), 12533 (2016).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Babayan, Y.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Bitton, O.

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7(1), 12533 (2016).
[Crossref] [PubMed]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Brandão, P. A.

Bretner, I.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cavalcanti, S. B.

Cheah, K.-W.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, H.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Chen, J.

Chen, S.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, W.

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Chen, X.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Cheng, Y.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Cheng, Z.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Cho, J.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

Cho, S.-W.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Cubukcu, E.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Cui, Y.

G. Rui, Q. Zhan, and Y. Cui, “Tailoring optical complex field with spiral blade plasmonic vortex lens,” Sci. Rep. 5(1), 13732 (2015).
[Crossref] [PubMed]

Danner, A.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Dong, J.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

Duan, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Fu, Y. H.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, Y.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gong, R.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Gray, S. K.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Guo, Q.

Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
[Crossref] [PubMed]

Guo, Q.-H.

Hao, R.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Hasman, E.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

He, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Huang, C.-B.

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Huang, J.-S.

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Huang, K.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Huang, L.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Huang, X.

Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
[Crossref] [PubMed]

Hussain, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Jin, G.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Jing, L.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Kang, M.

M. Kang, F. Liu, T.-F. Li, Q.-H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Kim, H.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[Crossref] [PubMed]

Kim, J.

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

Kim, K.

Kim, K.-Y.

Kim, S.-J.

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Kleiner, V.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kuznetsov, A. I.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Kwon, H.

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Lee, B.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[Crossref] [PubMed]

Lee, G.-Y.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

Lee, K.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

Lee, S.-Y.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Li, E.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Li, J.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

M. Kang, F. Liu, T.-F. Li, Q.-H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref] [PubMed]

Li, S.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Li, T.-F.

Li, X.

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Ling, X.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, C.

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

Liu, F.

Liu, H.

Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
[Crossref] [PubMed]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, J.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

Liu, L.

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

Liu, M.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

McMahon, J. M.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Mehmood, M. Q.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Mei, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Muhlenbernd, H.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Nelson, R. L.

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Odom, T. W.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Park, H.

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

Park, J.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Prior, Y.

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7(1), 12533 (2016).
[Crossref] [PubMed]

Qiu, C.-W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Reineke, B.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

Rho, J.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Rogers, E. T. F.

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Roy, T.

Rui, G.

G. Rui, Q. Zhan, and Y. Cui, “Tailoring optical complex field with spiral blade plasmonic vortex lens,” Sci. Rep. 5(1), 13732 (2015).
[Crossref] [PubMed]

Schatz, G. C.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Shitrit, N.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

Siew, S. Y.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Song, Q.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Tan, Q.

Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Teng, J.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Teng, S.

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tsai, W.-Y.

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, H.

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, S.

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, Y.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

Xiao, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Xu, Q.

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Yang, S.

Yang, Y.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Ye, W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

Yi, F.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Yin, W.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Yoon, G.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, Y. F.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.-C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yun, H.

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Zentgraf, T.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zeuner, F.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

Zhan, Q.

G. Rui, Q. Zhan, and Y. Cui, “Tailoring optical complex field with spiral blade plasmonic vortex lens,” Sci. Rep. 5(1), 13732 (2015).
[Crossref] [PubMed]

W. Chen, R. L. Nelson, and Q. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[Crossref] [PubMed]

Zhang, C.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Zhang, H.

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, J.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

Zhang, L.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, S.

Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
[Crossref] [PubMed]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

Zhang, T.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, X.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zheludev, N. I.

Zheng, B.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhou, H.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

Zhou, Y.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

Zhou, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Zhu, H.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

ACS Nano (2)

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-Dielectric Full-Color Printing with TiO2 Metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining standing waves in optical corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C.-W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultrathin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

IEEE Photonics J. (1)

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Laser Photonics Rev. (1)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photonics Rev. 9(4), 412–418 (2015).
[Crossref]

Nano Lett. (10)

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[Crossref] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Nanoscale (2)

G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale 10(9), 4237–4245 (2018).
[Crossref] [PubMed]

Q. Tan, Q. Guo, H. Liu, X. Huang, and S. Zhang, “Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases,” Nanoscale 9(15), 4944–4949 (2017).
[Crossref] [PubMed]

Nat. Commun. (5)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref] [PubMed]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref] [PubMed]

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7(1), 12533 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

New J. Phys. (1)

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, “Plasmonic vortex generator without polarization dependence,” New J. Phys. 20(3), 033024 (2018).
[Crossref]

Opt. Commun. (1)

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Sci. Rep. (2)

G. Rui, Q. Zhan, and Y. Cui, “Tailoring optical complex field with spiral blade plasmonic vortex lens,” Sci. Rep. 5(1), 13732 (2015).
[Crossref] [PubMed]

G.-Y. Lee, S.-Y. Lee, H. Yun, H. Park, J. Kim, K. Lee, and B. Lee, “Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits,” Sci. Rep. 6(1), 33317 (2016).
[Crossref] [PubMed]

Science (3)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the polarization-independent plasmonic vortex generator. (b) Illustration of the system coordinates and locations of nanoslits.
Fig. 2
Fig. 2 (a) Schematic showing the principle of the proposed structure when LCP (red) and RCP (blue) illuminate the sample, respectively. Green curve indicates the direction of angular momentum caused by geometric phase of nanoslits. (b) SEM image of 4th-order polarization-independent PVL. (c) Experimental setup scheme for measuring the plasmonic vortex.
Fig. 3
Fig. 3 Schematic of (a) a continuous slit PVL and (b)–(e) E z field amplitude calculated by using FDTD simulations for circular and diagonal linear polarizations. For the case of PVL consisting of nano-holes array; (f) Schematic and (g)–(j) field distributions for each polarization are shown, respectively. The phase nearby the center is inserted in the left corner insets.
Fig. 4
Fig. 4 FIB images, E z field distribution calculated by dipole modeling (upper) and NSOM images (lower) for various polarization incidences: (a)–(e) show (a) FIB image and (b)–(e) intensity profiles of the PVL with SOI (n = 1) whereas (f)–(j) show (f) FIB image and (g)–(j) intensity profiles of PVL without SOI (n = 0.5). The inset in each figure is a numerically calculated phase profile near the focus.
Fig. 5
Fig. 5 FIB images, E z field distribution calculated by dipole modeling (upper) and NSOM images (lower) of each polarization state for two type of 4th-order PI-PVL: (a) FIB image and (b)–(e) intensity profiles of center-focus PI-PVL. (f) FIB image (g)–(j) intensity profiles of off-center-focus PI-PVL. The inset in each figure is a phase profile. The intensity profiles have been rotated 45° because NSOM scanned the samples diagonally. As the phase and amplitude of plasmonic vortices are perfectly matched between LCP and RCP, the interference pattern disappears when y polarized light is incident, as shown in (e) and (j).
Fig. 6
Fig. 6 Simulated intensity profiles of multiple-foci PVL that can simultaneously generate plasmonic vortices without SOI and with SOI for (a) LCP, (b) RCP, (c) x-polarization, and (d) y-polarization.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N={ (ρ,θ)| ϕ 0 (ρ,θ)=2πq& ρ 0 ρ< ρ 0 + λ SPP },
E z = e αz A 0 e ±j(2n1)θ' e j k SPP ( ρ 0 ρcos(θθ')) dθ ' J ±(2n1) ( k SPP ρ),
E z = e αz A 0 e j k SPP ( ρ 0 ρcos(θθ')) dθ ' J 0 ( k SPP ρ).
E ztotal = a LCP E zLCP + a RCP E zRCP J 0 ( k SPP ρ),
E z = e αz A 0 e j l v θ' e j k SPP ( ρ 0 ρcos(θθ')) dθ ' J l v ( k SPP ρ).
ϕ(x,y)= k SPP (x x c ) 2 + (y y c ) 2 + l v tan 1 ( y y c x x c ).

Metrics