Abstract

A novel full-field X-ray fluorescence microscope based on total-reflection advanced Kirkpatrick–Baez mirror optics was developed. The total-reflection imaging mirror optics arrangement, with four reflections, has the advantage of being able to function both as a powerful low-pass energy filter, completely rejecting incident excitation X-rays, and as an achromatic optical imaging system. Isolated X-ray fluorescence signals can be imaged, avoiding imaging-detector saturation, with low background noise. A prototype fluorescence microscope constructed at SPring-8 demonstrated the capability to simultaneously image elemental distributions using various X-ray fluorescence signals (Ni, Cu, Zn, Ge, and Bi). A half-period spatial resolution of ~0.5–1 µm (1000–500 LP/mm) was achieved, owing to the achromaticity of the imaging mirrors and the photon-counting scheme of the CCD camera used for fluorescence detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The micro- and nano-distributions of major and minor elements are of great interest in various fields such as materials science, environmental science, and biology. One of the most powerful methods [1–3] to probe elemental distributions is micro-X-ray fluorescence (μXRF) [4], also known as scanning X-ray fluorescence microscopy (SXFM), which uses a focused X-ray beam. The intense and low-emittance X-rays produced in synchrotron radiation facilities mean that elemental distributions with spatial resolutions of the order of a few tens of nanometers can be obtained [5,6], and detection limits at the attogram level are possible [7]. However, such measurements require precise sample scanning using fine positioners, which makes rapid observation difficult, especially when the number of scanning steps is increased to improve image quality. In addition, since the points in the image are not measured simultaneously, the resultant elemental maps may be somewhat misleading when observing a dynamically evolving sample.

Given that next-generation synchrotron X-ray sources [8,9] and future advances in X-ray source technologies are expected to provide much more intense X-ray beams, new element-visualization methods that do not require sample scanning are highly desirable. Among such methods currently under development, one of the most exciting is full-field X-ray fluorescence microscopy (FXFM) [10], which can simultaneously detect various elements existing at different microscale positions using an optical imaging system, without any sample movement. In the visible light region, full-field fluorescence microscopes are commonly used. However, there are no high-resolution full-field fluorescence microscopes in the X-ray regions of the electromagnetic spectrum. Difficulties in the development of chromatic-aberration-free imaging optics for X-rays have contributed to this lack of high-resolution X-ray fluorescence microscopy development. However, recent work has shown that these problems could be overcome by the development of achromatic imaging optics consisting entirely of total-reflection mirrors, i.e., advanced Kirkpatrick–Baez (AKB) mirrors [11–13]. A spatial resolution of 50 nm (in bright-field mode), without chromatic aberration, at around 10 keV, has already been achieved [14]. The key factors that enabled this advance were the ultraprecise mirror fabrication, with an accuracy of 1 nm, and the development of monolithic imaging mirrors comprising an ellipse and a hyperbola on a single substrate. These two elements of the mirror design and fabrication contributed to the realization of diffraction-limited image formation, easy mirror alignment, and long-term stability of at least 20 h.

In this report, we propose a novel type of FXFM in which AKB mirror optics function as an achromatic optical imaging system and low-pass energy filter to completely reject incident excitation X-rays. The feasibility of this FXFM setup was investigated by observing an image of a Siemens star and samples containing various metal particles (Ni, Cu, Zn, Ge, and Bi) at the SPring-8 synchrotron radiation facility, Hyōgo Prefecture, Japan. The results of these experiments establish the spatial and energy resolutions, as well as the sensitivity, of the proposed system. Finally, we discuss the feasibility of high-resolution and highly sensitive FXFM.

2. Imaging optics and energy filter for X-ray fluorescence image formation

A key aspect of enhancing sensitivity in X-ray fluorescence detection is achieving the detection of only fluorescence, i.e., the intense X-ray excitation beam and scattered X-rays must be blocked. In visible fluorescence microscopy, high-performance wavelength filters, including specialized excitation, dichroic, and emission filters, may be used; however, such commercial optics are not available for X-ray wavelengths. In previous X-ray studies reported by Aoki et al. [10,15], a 90° arrangement of an optical imaging system, based on a Wolter mirror [16], against the optical axis, whose direction is parallel to the polarization direction, was employed to remove excitation X-rays and reduce the detection of scattered X-rays. These authors succeeded in obtaining X-ray fluorescence image formation using the total-reflection Wolter mirror for the first time. However, the use of such an arrangement makes the design of high-magnification imaging systems, requiring long beam paths, difficult. Furthermore, another critical problem is that users cannot perform seamless switching between bright-field and fluorescence observations. In this study, we present a novel full-field X-ray fluorescence imaging method that effectively utilizes AKB mirror optics for quadruple total reflection, realizing seamless switching and a high-magnification system.

Our developed AKB mirror optics form X-ray images, reflecting the X-rays four times, based on the phenomenon of total reflection. Total-reflection mirrors have quite low reflectivity for photons with energies greater than the critical energy of total reflection. This characteristic is often used to reject high-order harmonics from undulators in synchrotron radiation facilities. The quadruple total reflection of AKB mirror optics can enhance this functionality by the fourth power. Consequently, AKB mirror optics can operate as high-performance energy filters as well as imaging optics.

As an example of X-ray energy-filtering functionality, the relationship between reflectivity and X-ray energy for a Mo-coated mirror is illustrated in Fig. 1. Below 10 keV, the reflectivity for a quadruple bounce is 59%; however, at 20 keV, this value drops dramatically, to 6.1 × 10−9. Thus, total-reflection AKB mirror optics, such as Mo-coated mirrors, can effectively function as low-pass energy filters for highly specific detection of X-ray fluorescence photons. This behavior can also be used to provide seamless switching between bright-field and X-ray fluorescence modes via selection of the energy of the excitation X-rays. Furthermore, such a system can be aligned along a beamline, allowing the possibility of designing an X-ray microscope with a high magnification, up to the magnification limit imposed by the length of the beamline.

 figure: Fig. 1

Fig. 1 Reflectivity vs X-ray energy for a Mo-coated mirror. Grazing-incidence angle = 5 mrad. Data calculated using X-ray reflectivity software [17].

Download Full Size | PPT Slide | PDF

In this study, a Mo coating was employed for the AKB optics. Bright-field observation, for adjustment of the microscope, locating samples, and observation of sample morphology, was operated using a photon energy of 10 keV. For X-ray fluorescence, 20-keV X-rays were selected for excitation. An estimation of the ratio of the intensities of the excitation X-rays and X-ray fluorescence signals is obtained by considering the X-ray fluorescence cross-section [18], the solid angle of the AKB optics, the reflectivity of a quadruple bounce, the quantum efficiency of the imaging detector (32% at 10 keV and 5% at 20 keV), and the absorption by the air. For Ta Lα and Lβ emission from a 1-μm-thick Ta film, this ratio is 90:1 (fluorescence:excitation), which confirms that the energy-filtering performance of the AKB optics should allow adequate attenuation of the excitation and scattered X-ray intensities.

3. Experimental setup

All experiments were performed at the BL29XUL undulator beamline [19] of SPring-8. X-rays produced by the undulator were monochromatized by a double-crystal monochromator (Si 111). An experimental setup was constructed in the second experimental hutch (at a distance of approximately 100 m from the undulator). A schematic of the experimental setup is illustrated in Fig. 2. The arrangement consists of a diffuser (for use in bright-field mode only), a cross slit, samples, the AKB mirror optics, and imaging detectors. The parameters of the AKB mirror optics used in the experiment are listed in Table 1, and these are almost the same as those used in our previous study [14], the exceptions being the mirror coating material (rhodium for the previous study), a condenser, and the camera distance. The mirrors have surface roughness values of 0.2 nm (RMS), which was measured with a microscopic interferometer (Zygo, NewView 200CHR). Thus, the AKB mirror optics should have reflectivity characteristics that are almost ideal, resembling those shown in Fig. 1. To facilitate the experiment, the condenser we used in our previous arrangement for high-resolution observations was not installed. An imaging detector was placed 5.9-m downstream of the mirrors; whereas, in our previous study, the detector was placed 45-m downstream of the mirrors in order to obtain very high magnification. This alteration made the experiment much simpler to conduct because the X-rays easily reach the imaging detector [20]. A CCD (PI-LCX: 1300, pixel size (square) = 20 μm, area = 26.8 × 26 mm, Princeton Instruments, Inc.) cooled by liquid nitrogen is employed to detect X-ray fluorescence signals based on a single-photon counting scheme [15]. Further, for bright-field observation and mirror alignment, we employ two indirect detection X-ray cameras; one with high spatial resolution (XSight Micron LC ( × 20), effective pixel size (square) = 270 nm, area = 900 × 680 μm, RIGAKU corporation) and one with low spatial resolution (AA20MOD + ORCA-Flash4.0, effective pixel size (square) = 3.1 μm, area = 6.3 × 6.3 mm, Hamamatsu Photonics). The three detectors are switchable. In bright-field mode, the microscope is able to provide 50-nm spatial resolution, owing to the high-resolution X-ray camera and large NA of the AKB mirror optics. However, in fluorescence mode, resolution is limited by the pixel size of the CCD, and hence the estimated spatial resolution (half period) is 390 × 781 nm (horizontal × vertical).

 figure: Fig. 2

Fig. 2 Experimental setup.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Parameters of AKB mirror optics

4. Data analysis

The images acquired by the CCD were analyzed, based on a single-photon counting scheme [15], as follows. The recorded charge at each pixel, which is proportional to the photon energy when a single photon hits a pixel, was extracted. Then, the photon counting events were segmented according to photon-energy regions of interest for the fluorescence lines of interest, over the multiple images obtained, and accumulated. Where charge sharing [21] occurred, when parts of the charge cloud produced by a single photon diffused and were distributed among the pixels surrounding the pixel of interest, the dispersed charges were relocated to the pixel of interest using a reconstruction code that we developed. The corrected 2D images for various fluorescence lines were then visualized as elemental distributions. To obtain X-ray fluorescence spectra, histograms of the charges were constructed after performing the charge-sharing correction; the horizontal axis of the histogram, i.e., photon energy, was calibrated using the energies of known fluorescence lines and the excitation line.

5. Results

Immediately after the AKB optics had been finely adjusted, an X-ray image of a Siemens star (XRESO-50HC, NTT Advanced Technology Corporation), made of tantalum with a minimum feature size of 50 nm and thickness of 500 nm, was acquired in bright-field mode, i.e., with the high-resolution indirect-detection camera at an X-ray energy of 10 keV, as shown in Fig. 3. The 50-nm features at the innermost region of the star are clearly visible. The obtained magnifications were 83.3 (horizontal) and 25.6 (vertical), which are very consistent with the expected values (Table 1). This result allowed us to verify that the mirror had been successfully aligned.

 figure: Fig. 3

Fig. 3 Bright field X-ray image of Siemens star (minimum line width = 50 nm, thickness = 500 nm, material = Ta) obtained with the indirect camera (XSight Micron LC with a × 20 lens). Exposure = 30 s.

Download Full Size | PPT Slide | PDF

Next, the CCD camera was inserted in the setup in place of the indirect detection camera. To check the position of the CCD, an X-ray bright-field image of a Siemens star (XRESO-100, NTT Advanced Technology Corporation), made of tantalum with a minimum feature size of 100 nm and thickness of 1 μm (Fig. 4(a)), was acquired at a photon energy of 10 keV after detuning the undulator gap to reduce the X-ray intensity (Fig. 4(c)). Then, to shift the microscope to the fluorescence mode, the X-ray energy of the monochromator was set to 20 keV and the undulator gap was optimized. Here, the number of photons incident upon the sample was estimated to be approximately 1.0 × 107 photons/s/μm2. X-ray fluorescence images were then recorded using the CCD. In these experiments, the exposure time for the CCD was set to 10 s/image to ensure that only one photon was detected at each pixel. The number of acquired images was 1200, which corresponds to a total exposure time of 3.3 h. The actual measurement, however, took 6 h (i.e., 18 s/image) because of the time required for CCD readout (readout rate = 100 kHz). The images displayed in Fig. 4(b) show fluorescence (Ta Lα1,2 and Lβ1,2 lines) images. Vertical lines with 500-nm widths (1000 LP/mm) and horizontal lines with 1000-nm widths (500 LP/mm) were resolved. This is, to the best of our knowledge, the highest spatial resolution ever reported for full-field X-ray fluorescence imaging. The grayscale on the fluorescence image indicates the number of photons detected per pixel during the exposure time, and the averaged photon count for the 1-µm-thick Ta was 20 photons/pixel. The reverse contrast of the fluorescence image compared to that of the bright-field image, which is generated by transmitted light, demonstrates that the fluorescence-emission X-rays were clearly visualized. The spectrum in Fig. 4(d) was acquired at the same time as the fluorescence images (Fig. 4(b)). The expected fluorescence lines were clearly observed, although weak sum peaks appear at around 17 keV. The ratio of the sum of the intensities of the obtained fluorescence lines (Ta Lα and Lβ) to the excitation line intensity is 45, which is of the same order of magnitude as the estimated value (90). This result suggests the AKB mirror optics can function well as an energy filter. Typical energy resolution was found to be 180 eV (full width at half maximum) for the Ta Lα line (8.15 keV), which compares well with resolution values for silicon drift detectors, which are commonly used for X-ray fluorescence analysis. This high energy resolution is a great advantage of cooled CCDs, which is obtained at the expense of transfer speed.

 figure: Fig. 4

Fig. 4 X-ray fluorescence and bright-field images of Siemens star (minimum line width = 100 nm, thickness = 1000 nm, material = Ta). (a) Schematic of the Siemens star pattern. The values indicated by the overlaid red arrows are line widths at each of the innermost edges of the donut-like islands. (b) Fluorescence images constructed from the sum of the Ta Lα1,2 and Lβ1,2 line intensities. The grayscale indicates the number of detected photons during the total exposure for each pixel. (c) Bright-field images recorded with the CCD at 10 keV. The grayscale indicates the transmitted X-ray intensity (arb. units). The lower images in (b) and (c) are expanded views of the central portion of the upper images in each case. (d) X-ray spectrum (exposure = 1000 s). The spectrum was not corrected for the spectral dependence of the quantum efficiency of the CCD.

Download Full Size | PPT Slide | PDF

As a practical test of the performance of our X-ray microscope, micron-sized particles made of various materials (NiO2 (399523-100G SIGMA-ALDRICH), Cu (CU-114125, The Nilaco Corporation), Zn (Hakusuitech Co., Ltd.), Ge (327395-5G, SIGMA-ALDRICH), Bi (264008-25G, SIGMA-ALDRICH)) were observed under the conditions used to obtain the Siemens star images displayed in Fig. 4. Two samples were prepared by spreading particles on a Cu mesh (G600HHS, Gilder Grids Ltd.; thickness = 8 μm), and on a thin SiN membrane (MEM-N020027/10M, NTT Advanced Technology Corporation; thickness = 270 nm); the obtained fluorescence images are shown in Figs. 5 and 6, respectively, alongside a bright field image (Fig. 5 only), and merged images showing each of the component images as different colors. Furthermore, the spectra of the sample on the Cu mesh, with various fluorescence lines labeled, is presented in Fig. 7. The sample on the SiN membrane was also observed by SEM-EDX (S-4800, Hitachi High-Technologies Corporation), and a merged image showing the elemental composition obtained from this measurement is also shown in Fig. 6. The SEM-EDX image and the merged image obtained via X-ray fluorescence are in good agreement; any minor differences between them may be ascribed to particles moving or and dropping off the sample during transfer to the SEM instrument or measurement preparation.

 figure: Fig. 5

Fig. 5 X-ray fluorescence images, merged image of the fluorescence images, bright-field X-ray image, and SEM image of micron-sized particles on a Cu mesh. The color scale in the fluorescence images indicates the number of photons detected during the exposure time for each pixel. The bright-field image was recorded with the low-resolution indirect camera (AA20MOD) at 10 keV. The region of the sample displayed in the SEM image is not the same as that of the X-ray images, but the bright-field and fluorescence images capture the same sample area.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 X-ray fluorescence images, merged image of the fluorescence images, SEM image, and SEM-EDX image of micron-sized particles on a 270-nm-thick SiN membrane. The color scale in the fluorescence images indicates the number of photons detected during the exposure time for each pixel. The regions displayed in the SEM and SEM-EDX images are the same as that of the fluorescence images. The colors of the merged fluorescence and EDX images are consistent.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 X-ray spectrum for the sample imaged in Fig. 5. Exposure = 1000 s. The spectrum was not corrected for the spectral dependence of the quantum efficiency of the CCD.

Download Full Size | PPT Slide | PDF

6. Discussion

6.1. Spatial resolution

The best half-period spatial resolution obtained for the microscope in fluorescence mode was 500 nm (horizontal direction), which is close to the expected value. When the camera was replaced with the high-resolution one, a half-period resolution of 50 nm could be achieved in bright-field mode. These results demonstrate that the instrument resolution is limited by the camera pixel size. Thus, if high-resolution pixel-array detectors are developed or the magnification of the imaging optics is increased by extending the camera distance, a spatial resolution of 50 nm will also be achievable in fluorescence mode. With respect to the former possibility, although lowering the pixel size seems to be impractical from a technical perspective, the use of an interpolation algorithm for pixel-array detectors [21,22], which can lower the effective spatial resolution beyond the pixel dimensions, via computation of a weighted mean of charges distributed by the charge-sharing effect, is a promising possibility. Moreover, extension of the camera distance is extremely difficult due to the limited space in most beamlines. We expect to overcome this problem by introducing the proposed optical imaging system based on convex and concave mirrors [23,24], which can significantly increase magnification by shifting the principle surface nearer to the sample plane owing to the combined use of convex and concave mirrors. Magnifications greater than × 500 are expected to be possible by employing this optical system, which allows 50-nm resolution to be obtained using a detector with pixel size of 20 μm and a camera length of 2 m.

6.2. Sensitivity

The sensitivity of the system we demonstrated is 20 photons/pixel for a 1-µm-thick Ta film, for 3.3 h of exposure, which is not very sensitive compared with the sensitivities of commonly used SXFMs. This low sensitivity is caused by the loss of X-rays at the sample position and the very small solid angle of the AKB optics. The former problem could be overcome by using optimized condenser optics; a 500–1000-fold increase in the photon flux density at the sample position would be expected in this case.

6.3. Single exposure time

The validity of the selected exposure time for single-photon counting was considered. The ratio of abnormal events, i.e., two or more photons simultaneously arriving at a single pixel or a photon impinging on a pixel adjacent to one hit by another photon, was approximately 3–6% of the estimated number of real events; the latter type of abnormal event leads to failure of the charge-sharing correction. This relatively high percentage suggests that the exposure time of 10 s/image is not sufficiently short for detecting only a single photon per pixel. This problem will become critical when using a condenser and more intense X-ray sources in the future, but it can be overcome by using high-frame-rate pixel-array detectors, which are currently being developed by many researchers [21,22].

7. Summary and outlook

We proposed and developed a novel FXFM based on total-reflection AKB mirror optics. The demonstration experiments revealed 500-nm spatial resolution for X-ray fluorescence images. Furthermore, color-merged X-ray images depicting elemental distributions were achieved, owing to the achromaticity of the imaging mirrors. Potential improvements to the microscope have been discussed. We anticipate that spatial resolution down to 50 nm and 103-fold sensitivity improvements will be possible in the future. The improved microscope should be capable of observing nanostructures and elemental distributions of real samples, such as semiconductor devices and inhomogeneous catalysts. To further improve spatial resolution and sensitivity in the future, the numerical aperture should be enlarged by the introduction of multilayer mirrors [25,26] and complete Wolter mirrors. However, it must be emphasized that the X-ray fluorescence energy selectivity and the energy-filtering performance will be decreased at the cost of spatial resolution and sensitivity improvements. In some applications, this may be an acceptable compromise for achieving high performance in spatial resolution and sensitivity. We estimate that the sensitivity, after all the above mentioned improvements, can theoretically reach a level comparable to that of SXFMs. However, to realize this, some challenging problems that currently remain unresolved must be addressed.

Finally, we would also like to mention that the achromatic imaging optics used in this study are a very promising tool for color X-ray imaging, in both two and three dimensions [27,28], in X-ray imaging spectrometers [29,30], as well as for other X-ray fluorescence applications. These more advanced X-ray applications will be realized soon.

Funding

Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) (JP17H01073, JP26286077); Shimadzu Science Foundation.

Acknowledgments

We are grateful to Mr. Shuhei Yasuda for his considerable support. We also wish to express our gratitude to Dr. Kazuhiko Omote of Rigaku Corp. for allowing us to use the high-resolution indirect X-ray camera. The use of BL29XUL at SPring-8 was supported by RIKEN.

References

1. C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006). [CrossRef]   [PubMed]  

2. C. G. Ryan, “PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials,” Nucl. Instrum. Methods Phys. Res. B 269(20), 2151–2162 (2011). [CrossRef]  

3. A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012). [CrossRef]   [PubMed]  

4. M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014). [CrossRef]   [PubMed]  

5. S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006). [CrossRef]  

6. H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016). [CrossRef]   [PubMed]  

7. S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008). [CrossRef]  

8. D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. At. Mol. Opt. Phys. 38(9), S773–S797 (2005). [CrossRef]  

9. M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014). [CrossRef]   [PubMed]  

10. A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000). [CrossRef]  

11. R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, and K. Takeshi, “Development of an advanced Kirkpatrick-Baez microscope,” Opt. Lett. 21(17), 1321–1323 (1996). [CrossRef]   [PubMed]  

12. S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012). [CrossRef]   [PubMed]  

13. S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015). [CrossRef]   [PubMed]  

14. S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017). [CrossRef]   [PubMed]  

15. M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007). [CrossRef]   [PubMed]  

16. H. Wolter, “Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen,” Ann. Phys. 445(1–2), 94–114 (1952). [CrossRef]  

17. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]  

18. S. Manuel, A. Brunetti, B. Golosio, A. Somogyi, and A. Simionovici, “XRAYLIB tables (X-ray fluorescence cross-section),” (European Synchrotron Radiation Facility, 2003), http://ftp.esrf.fr/pub/scisoft/xraylib/xraylib_tables_v2.3.pdf

19. K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001). [CrossRef]  

20. S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015). [CrossRef]  

21. S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016). [CrossRef]   [PubMed]  

22. M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018). [CrossRef]   [PubMed]  

23. J. Yamada, S. Matsuyama, Y. Sano, and K. Yamauchi, “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” Appl. Opt. 56(4), 967–974 (2017). [CrossRef]   [PubMed]  

24. J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019). [CrossRef]   [PubMed]  

25. S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018). [CrossRef]   [PubMed]  

26. S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018). [CrossRef]  

27. E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017). [CrossRef]  

28. R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging applications: The medipix and timepix family,” Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018). [CrossRef]  

29. V. N. Strocov, “Concept of a spectrometer for resonant inelastic X-ray scattering with parallel detection in incoming and outgoing photon energies,” J. Synchrotron Radiat. 17(1), 103–106 (2010). [CrossRef]   [PubMed]  

30. T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
    [Crossref] [PubMed]
  2. C. G. Ryan, “PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials,” Nucl. Instrum. Methods Phys. Res. B 269(20), 2151–2162 (2011).
    [Crossref]
  3. A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
    [Crossref] [PubMed]
  4. M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
    [Crossref] [PubMed]
  5. S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
    [Crossref]
  6. H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
    [Crossref] [PubMed]
  7. S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
    [Crossref]
  8. D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. At. Mol. Opt. Phys. 38(9), S773–S797 (2005).
    [Crossref]
  9. M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
    [Crossref] [PubMed]
  10. A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
    [Crossref]
  11. R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, and K. Takeshi, “Development of an advanced Kirkpatrick-Baez microscope,” Opt. Lett. 21(17), 1321–1323 (1996).
    [Crossref] [PubMed]
  12. S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
    [Crossref] [PubMed]
  13. S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
    [Crossref] [PubMed]
  14. S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
    [Crossref] [PubMed]
  15. M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
    [Crossref] [PubMed]
  16. H. Wolter, “Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen,” Ann. Phys. 445(1–2), 94–114 (1952).
    [Crossref]
  17. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
    [Crossref]
  18. S. Manuel, A. Brunetti, B. Golosio, A. Somogyi, and A. Simionovici, “XRAYLIB tables (X-ray fluorescence cross-section),” (European Synchrotron Radiation Facility, 2003), http://ftp.esrf.fr/pub/scisoft/xraylib/xraylib_tables_v2.3.pdf
  19. K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
    [Crossref]
  20. S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
    [Crossref]
  21. S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
    [Crossref] [PubMed]
  22. M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
    [Crossref] [PubMed]
  23. J. Yamada, S. Matsuyama, Y. Sano, and K. Yamauchi, “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” Appl. Opt. 56(4), 967–974 (2017).
    [Crossref] [PubMed]
  24. J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
    [Crossref] [PubMed]
  25. S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
    [Crossref] [PubMed]
  26. S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
    [Crossref]
  27. E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
    [Crossref]
  28. R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging applications: The medipix and timepix family,” Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018).
    [Crossref]
  29. V. N. Strocov, “Concept of a spectrometer for resonant inelastic X-ray scattering with parallel detection in incoming and outgoing photon energies,” J. Synchrotron Radiat. 17(1), 103–106 (2010).
    [Crossref] [PubMed]
  30. T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014).
    [Crossref] [PubMed]

2019 (1)

2018 (4)

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
[Crossref] [PubMed]

R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging applications: The medipix and timepix family,” Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018).
[Crossref]

2017 (3)

J. Yamada, S. Matsuyama, Y. Sano, and K. Yamauchi, “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” Appl. Opt. 56(4), 967–974 (2017).
[Crossref] [PubMed]

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

2016 (2)

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

2015 (2)

S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

2014 (3)

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
[Crossref] [PubMed]

T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014).
[Crossref] [PubMed]

2012 (2)

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

2011 (1)

C. G. Ryan, “PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials,” Nucl. Instrum. Methods Phys. Res. B 269(20), 2151–2162 (2011).
[Crossref]

2010 (1)

V. N. Strocov, “Concept of a spectrometer for resonant inelastic X-ray scattering with parallel detection in incoming and outgoing photon energies,” J. Synchrotron Radiat. 17(1), 103–106 (2010).
[Crossref] [PubMed]

2008 (1)

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

2007 (1)

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

2006 (2)

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

2005 (1)

D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. At. Mol. Opt. Phys. 38(9), S773–S797 (2005).
[Crossref]

2001 (1)

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

2000 (1)

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

1996 (1)

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

1952 (1)

H. Wolter, “Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen,” Ann. Phys. 445(1–2), 94–114 (1952).
[Crossref]

Ando, M.

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

Aoki, S.

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

Ault, A. P.

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

Ballabriga, R.

R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging applications: The medipix and timepix family,” Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018).
[Crossref]

Benichou, G.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Benson, D.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Bergamaschi, A.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Bilderback, D. H.

D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. At. Mol. Opt. Phys. 38(9), S773–S797 (2005).
[Crossref]

Bonventre, J.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Bouet, N.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Brückner, M.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Campbell, M.

R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging applications: The medipix and timepix family,” Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018).
[Crossref]

Cartier, S.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Casuccio, G. S.

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

Chu, Y. S.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Chuang, Y. D.

T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014).
[Crossref] [PubMed]

Conley, R.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Dinapoli, R.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Distel, D.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Dreier, E. S.

M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
[Crossref] [PubMed]

Elleaume, P.

D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. At. Mol. Opt. Phys. 38(9), S773–S797 (2005).
[Crossref]

Emi, Y.

Fröjdh, E.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Fujii, M.

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

George, G. N.

M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
[Crossref] [PubMed]

Goto, S.

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

Grassian, V. H.

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

Greiffenberg, D.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Hackett, M. J.

M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
[Crossref] [PubMed]

Handa, S.

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

Hata, K.

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Hentschel, D.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Hillion, F.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Hoshino, M.

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

Huang, X.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Ikeda, N.

Inoue, I.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

Inoue, T.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

Inubushi, Y.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

Ishikawa, T.

J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
[Crossref] [PubMed]

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Ishino, T.

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

Ito, S.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Iwai, T.

Jakubek, J.

M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
[Crossref] [PubMed]

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Kagias, M.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Kalbfleisch, S.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Kampf, J. P.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Katagishi, K.

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

Kato, Y.

Katori, Y.

Kawamura, N.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Kehres, J.

M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
[Crossref] [PubMed]

Khalil, M.

M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
[Crossref] [PubMed]

Kidani, N.

Kim, J.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

Kino, H.

S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

Kleinfeld, A. M.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Kodama, R.

Kohmura, Y.

J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
[Crossref] [PubMed]

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

Korbas, M.

M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
[Crossref] [PubMed]

Koyama, T.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

Lauer, K.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Le Pape, A.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Lechene, C.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Li, L.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Llopart, X.

R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging applications: The medipix and timepix family,” Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018).
[Crossref]

Lotte, S.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Ludwig, D.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Luyten, Y.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Matsuyama, S.

J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
[Crossref] [PubMed]

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

J. Yamada, S. Matsuyama, Y. Sano, and K. Yamauchi, “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” Appl. Opt. 56(4), 967–974 (2017).
[Crossref] [PubMed]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

Mayilyan, D.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

McMahon, G.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Mezza, D.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Mimura, H.

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

Mozzanica, A.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Namiki, T.

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

Nazaretski, E.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Nishino, Y.

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

Norris, G. A.

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

Ohashi, H.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

Okada, H.

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

Olsen, U. L.

M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
[Crossref] [PubMed]

Osaka, T.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

Padmore, H. A.

T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014).
[Crossref] [PubMed]

Park, K. M.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Peters, T. M.

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

Pickering, I. J.

M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
[Crossref] [PubMed]

Pushie, M. J.

M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
[Crossref] [PubMed]

Ramilli, M.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Rau, C.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Redford, S.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Robinson, I.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Ruder, C.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Ryan, C. G.

C. G. Ryan, “PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials,” Nucl. Instrum. Methods Phys. Res. B 269(20), 2151–2162 (2011).
[Crossref]

Sano, Y.

J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
[Crossref] [PubMed]

J. Yamada, S. Matsuyama, Y. Sano, and K. Yamauchi, “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” Appl. Opt. 56(4), 967–974 (2017).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

Sawvel, E. J.

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

Schädler, L.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Schmitt, B.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Schwartz, M.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Schyns, L. E. J. R.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Sefc, L.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Shi, X.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Shimura, M.

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

Slodzian, G.

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

Stampanoni, M.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Strocov, V. N.

V. N. Strocov, “Concept of a spectrometer for resonant inelastic X-ray scattering with parallel detection in incoming and outgoing photon energies,” J. Synchrotron Radiat. 17(1), 103–106 (2010).
[Crossref] [PubMed]

Suzuki, M.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Sykora, V.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Takano, H.

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

Takeshi, K.

Takeuchi, A.

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

Tamasaku, K.

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Tanaka, H.

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

Tanaka, T.

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

Tanaka, Y.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Thattil, D.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Tinti, G.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Tono, K.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

Trojanova, E.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Turecek, D.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Uher, J.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Verhaegen, F.

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

Voronov, D. L.

T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014).
[Crossref] [PubMed]

Wagner, U.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Wang, Z.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Warwick, T.

T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014).
[Crossref] [PubMed]

Watanabe, N.

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

Weckert, E.

D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. At. Mol. Opt. Phys. 38(9), S773–S797 (2005).
[Crossref]

Willis, R. D.

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

Wolter, H.

H. Wolter, “Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen,” Ann. Phys. 445(1–2), 94–114 (1952).
[Crossref]

Yabashi, M.

J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
[Crossref] [PubMed]

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
[Crossref] [PubMed]

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Yamada, J.

J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
[Crossref] [PubMed]

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

J. Yamada, S. Matsuyama, Y. Sano, and K. Yamauchi, “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” Appl. Opt. 56(4), 967–974 (2017).
[Crossref] [PubMed]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

Yamada, N.

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

Yamamoto, K.

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

Yamamura, K.

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

Yamauchi, K.

J. Yamada, S. Matsuyama, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors,” Opt. Express 27(3), 3429–3438 (2019).
[Crossref] [PubMed]

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

J. Yamada, S. Matsuyama, Y. Sano, and K. Yamauchi, “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” Appl. Opt. 56(4), 967–974 (2017).
[Crossref] [PubMed]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors,” Opt. Express 23(8), 9746–9752 (2015).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

Yamazaki, H.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Yan, H.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Yasuda, S.

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

Yumoto, H.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

Yusuf, M.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Zhang, J.

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

Zhou, J.

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

Ann. Phys. (1)

H. Wolter, “Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen,” Ann. Phys. 445(1–2), 94–114 (1952).
[Crossref]

Appl. Opt. (1)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Chem. Rev. (1)

M. J. Pushie, I. J. Pickering, M. Korbas, M. J. Hackett, and G. N. George, “Elemental and chemically specific X-ray fluorescence imaging of biological systems,” Chem. Rev. 114(17), 8499–8541 (2014).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

A. P. Ault, T. M. Peters, E. J. Sawvel, G. S. Casuccio, R. D. Willis, G. A. Norris, and V. H. Grassian, “Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio,” Environ. Sci. Technol. 46(8), 4331–4339 (2012).
[Crossref] [PubMed]

J. Biol. (1)

C. Lechene, F. Hillion, G. McMahon, D. Benson, A. M. Kleinfeld, J. P. Kampf, D. Distel, Y. Luyten, J. Bonventre, D. Hentschel, K. M. Park, S. Ito, M. Schwartz, G. Benichou, and G. Slodzian, “High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry,” J. Biol. 5(6), 20 (2006).
[Crossref] [PubMed]

J. Instrum. (1)

E. Trojanova, L. E. J. R. Schyns, D. Ludwig, J. Jakubek, A. Le Pape, L. Sefc, S. Lotte, V. Sykora, D. Turecek, J. Uher, and F. Verhaegen, “Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors,” J. Instrum. 12(01), C01056 (2017).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. At. Mol. Opt. Phys. 38(9), S773–S797 (2005).
[Crossref]

J. Synchrotron Radiat. (5)

M. Yabashi, K. Tono, H. Mimura, S. Matsuyama, K. Yamauchi, T. Tanaka, H. Tanaka, K. Tamasaku, H. Ohashi, S. Goto, and T. Ishikawa, “Optics for coherent X-ray applications,” J. Synchrotron Radiat. 21, 976–985 (2014).
[Crossref] [PubMed]

S. Cartier, M. Kagias, A. Bergamaschi, Z. Wang, R. Dinapoli, A. Mozzanica, M. Ramilli, B. Schmitt, M. Brückner, E. Fröjdh, D. Greiffenberg, D. Mayilyan, D. Mezza, S. Redford, C. Ruder, L. Schädler, X. Shi, D. Thattil, G. Tinti, J. Zhang, and M. Stampanoni, “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synchrotron Radiat. 23, 1462–1473 (2016).
[Crossref] [PubMed]

M. Khalil, E. S. Dreier, J. Kehres, J. Jakubek, and U. L. Olsen, “Subpixel resolution in CdTe Timepix3 pixel detectors,” J. Synchrotron Radiat. 25, 1650–1657 (2018).
[Crossref] [PubMed]

V. N. Strocov, “Concept of a spectrometer for resonant inelastic X-ray scattering with parallel detection in incoming and outgoing photon energies,” J. Synchrotron Radiat. 17(1), 103–106 (2010).
[Crossref] [PubMed]

T. Warwick, Y. D. Chuang, D. L. Voronov, and H. A. Padmore, “A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy,” J. Synchrotron Radiat. 21, 736–743 (2014).
[Crossref] [PubMed]

Microsc. Microanal. (1)

S. Matsuyama, J. Yamada, K. Hata, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “High-resolution full-field X-ray microscope for 20-keV X-rays with multilayer imaging mirrors,” Microsc. Microanal. 24(S2), 284–285 (2018).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (2)

R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging applications: The medipix and timepix family,” Nucl. Instrum. Methods Phys. Res. A 878, 10–23 (2018).
[Crossref]

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray optics,” Nucl. Instrum. Methods Phys. Res. A 467–468, 686–689 (2001).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

C. G. Ryan, “PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials,” Nucl. Instrum. Methods Phys. Res. B 269(20), 2151–2162 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa, and K. Yamauchi, “Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors,” Proc. SPIE 9592, 959208 (2015).
[Crossref]

Rev. Sci. Instrum. (3)

A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71(3), 1279–1285 (2000).
[Crossref]

S. Matsuyama, H. Mimura, H. Yumoto, Y. Sano, K. Yamamura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Instrum. 77(10), 103102 (2006).
[Crossref]

M. Hoshino, T. Ishino, T. Namiki, N. Yamada, N. Watanabe, and S. Aoki, “Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope,” Rev. Sci. Instrum. 78(7), 073706 (2007).
[Crossref] [PubMed]

Sci. Rep. (3)

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8(1), 17440 (2018).
[Crossref] [PubMed]

H. Yan, E. Nazaretski, K. Lauer, X. Huang, U. Wagner, C. Rau, M. Yusuf, I. Robinson, S. Kalbfleisch, L. Li, N. Bouet, J. Zhou, R. Conley, and Y. S. Chu, “Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution,” Sci. Rep. 6(1), 20112 (2016).
[Crossref] [PubMed]

S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa, and K. Yamauchi, “50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7(1), 46358 (2017).
[Crossref] [PubMed]

Surf. Interface Anal. (1)

S. Matsuyama, H. Mimura, K. Katagishi, H. Yumoto, S. Handa, M. Fujii, Y. Sano, M. Shimura, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Trace element mapping using a high-resolution scanning X-ray fluorescence microscope equipped with a Kirkpatrick-Baez mirror system,” Surf. Interface Anal. 40, 1042–1045 (2008).
[Crossref]

Other (1)

S. Manuel, A. Brunetti, B. Golosio, A. Somogyi, and A. Simionovici, “XRAYLIB tables (X-ray fluorescence cross-section),” (European Synchrotron Radiation Facility, 2003), http://ftp.esrf.fr/pub/scisoft/xraylib/xraylib_tables_v2.3.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Reflectivity vs X-ray energy for a Mo-coated mirror. Grazing-incidence angle = 5 mrad. Data calculated using X-ray reflectivity software [17].
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 Bright field X-ray image of Siemens star (minimum line width = 50 nm, thickness = 500 nm, material = Ta) obtained with the indirect camera (XSight Micron LC with a × 20 lens). Exposure = 30 s.
Fig. 4
Fig. 4 X-ray fluorescence and bright-field images of Siemens star (minimum line width = 100 nm, thickness = 1000 nm, material = Ta). (a) Schematic of the Siemens star pattern. The values indicated by the overlaid red arrows are line widths at each of the innermost edges of the donut-like islands. (b) Fluorescence images constructed from the sum of the Ta Lα1,2 and Lβ1,2 line intensities. The grayscale indicates the number of detected photons during the total exposure for each pixel. (c) Bright-field images recorded with the CCD at 10 keV. The grayscale indicates the transmitted X-ray intensity (arb. units). The lower images in (b) and (c) are expanded views of the central portion of the upper images in each case. (d) X-ray spectrum (exposure = 1000 s). The spectrum was not corrected for the spectral dependence of the quantum efficiency of the CCD.
Fig. 5
Fig. 5 X-ray fluorescence images, merged image of the fluorescence images, bright-field X-ray image, and SEM image of micron-sized particles on a Cu mesh. The color scale in the fluorescence images indicates the number of photons detected during the exposure time for each pixel. The bright-field image was recorded with the low-resolution indirect camera (AA20MOD) at 10 keV. The region of the sample displayed in the SEM image is not the same as that of the X-ray images, but the bright-field and fluorescence images capture the same sample area.
Fig. 6
Fig. 6 X-ray fluorescence images, merged image of the fluorescence images, SEM image, and SEM-EDX image of micron-sized particles on a 270-nm-thick SiN membrane. The color scale in the fluorescence images indicates the number of photons detected during the exposure time for each pixel. The regions displayed in the SEM and SEM-EDX images are the same as that of the fluorescence images. The colors of the merged fluorescence and EDX images are consistent.
Fig. 7
Fig. 7 X-ray spectrum for the sample imaged in Fig. 5. Exposure = 1000 s. The spectrum was not corrected for the spectral dependence of the quantum efficiency of the CCD.

Tables (1)

Tables Icon

Table 1 Parameters of AKB mirror optics

Metrics