Abstract

Ge0.998Pb0.002 photodetectors (PDs) with a GePb layer grown on n-type Ge (100) substrate by magnetron sputtering epitaxy were fabricated by complementary metal-oxide semiconductor (CMOS)-compatible technology. For Ge0.998Pb0.002 PDs, the room-temperature dark current density at −1 V was 3.3 A/cm2. At room temperature, the GePb PDs demonstrated a longwave cutoff of 2.5 μm and the optical responsivities of GePb PDs ranging from 1500 nm to 2000 nm were measured. A temperature dependence optical characterization of these detectors was conducted and temperature-dependent energy bandgaps of Ge0.998Pb0.002 were derived from the photocurrent spectra.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

PDs made of Group IV alloys such as GeSn compatible with CMOS technology can extend the response wavelength into the shortwave infrared region [1–7]. The increase in the response wavelength of a GeSn detector is attributed to the adjustable bandgap of GeSn with varied Sn content [8,9]. Similar to GeSn alloys, the bandgap of GePb alloys can also be adjusted by the Pb content in the alloys [10–13]. Moreover, in theory, it is expected that the Γ and L valleys of GePb alloys shift down more than GeSn alloys with the same Ge fraction. This suggests that a GePb detector with low Pb content can cover the entire shortwave infrared region.

However, the epitaxial growth of GePb alloys has several challenges such as low solid solubility (<0.5%), large lattice mismatches, and Pb segregation phenomena [13–15]. There is little research on the epitaxial growth of GePb alloys, and no reports on GePb photonics devices have been published yet. As a low-cost and efficient method, magnetron sputtering has advantages in mass production, exhibiting great potential in the epitaxial growth of silicon-based materials [16]. Recently, we showed that high-quality Ge1-xPbx (x < 1%) can be grown using magnetron sputtering epitaxy [13]. This laid a solid foundation for the fabrication of GePb PDs.

In this paper, GePb PDs with a GePb intrinsic layer grown on n-type Ge substrate by the sputtering method are fabricated and characterized. Through a temperature dependence study of the optical characterization, the properties of Ge0.998Pb0.002 PDs such as the bandgap and responsivity are investigated. The results show that by adding a small amount of Pb content to the Ge lattice, the GePb PDs can extend the cutoff wavelength by up to 2.5 μm.

2. Material growth and device fabrication

For this study, 780-nm-thick undoped GePb alloys were grown at 250 °C on 4-in As-doped Ge (100) with a resistivity of 0.01-0.03 Ω·cm by magnetron sputtering epitaxy. Before deposition, the Ge wafers were ultrasonically cleaned with acetone and ethanol solutions. Then, the Ge wafers were immersed in a 1:10 HF and H2O solution to remove the native oxide layer, followed by rinsing with deionized water. They were dried with a nitrogen gun and immediately transferred to the sputtering chamber. The base pressure of the sputtering chamber was less than 2 × 10−7 torr. Prior to the growth of the GePb alloy, a Ge buffer of about 40 nm in thickness was deposited at 400 °C. The growth rate of GePb films is about 0.13 nm/s. Figure 1 presents the measured 2θ-ω (004) and (224) high-resolution X-ray diffraction (HR-XRD) curves of the as-grown GePb sample. The Pb composition of the sample is 0.2%, calculated according to the Vegard’s law [12]. The full width at half maximum (FWHM) of the (004) Ge0.998Pb0.002 diffraction peak is 0.017° and the dislocation density estimated from the XRD is less than 106 cm−2, which indicates that the sample has high crystalline quality. The structural properties of Ge0.998Pb0.002 alloys are calculated from XRD data. And the in-plane and out-of-plane lattice constants are 5.6606 Å and 5.6580 Å, respectively. The in-plane strain of GePb alloy is approximately −0.03%.

 figure: Fig. 1

Fig. 1 HR-XRD2θ-ω scans of GePb/Ge substrate along (004) and (224) directions.

Download Full Size | PPT Slide | PDF

The GePb PDs were fabricated through CMOS-compatible technology. Before device fabrication, boron (B) ions were implanted on the top of the GePb layer with an energy of 20 KeV and a dose of 1.0 × 1015 cm−2. Then, the samples were annealed at 375 °C for 60 s in a N2 atmosphere to form a p+-type layer. After that, the devices’ mesa with a diameter range from 50 to 200 μm was defined by photolithography. Inductively coupled plasma (ICP) etching (Cl2 and Ar were used) on 800-nm-thick SiO2 was deposited by plasma-enhanced chemical vapor deposition (PECVD) and etched to form metal contact holes. The metal contacts of the GePb alloy and Ge substrate contained 30-nm-thick Ni and 1000-nm-thick Al, and were produced by lift-off metallization processing. A schematic cross section and top view of the GePb/Ge PD are shown in Figs. 2(a) and 2(b), respectively.

 figure: Fig. 2

Fig. 2 (a) Schematic cross section and (b) top view of GePb/Ge PD.

Download Full Size | PPT Slide | PDF

3. Results and discussion

The dark current-voltage (I-V) characteristics of the devices were measured with an Agilent B1500A semiconductor parameter analyzer. Figure 3(a) shows the room temperature I-V characteristics of the Ge0.998Pb0.002 PDs with different mesa diameters. The devices exhibited an obvious rectifying behavior. The dark currents of the 50 μm PD at −1 V and 0.5 V are 0.07 and 1.19 mA. The dark current densities are 3.6 and 3.3 A/cm2 at −1 V for mesa diameters of 50 μm and 200 μm, respectively. To further analyze the dark current characteristics of the device, the room-temperature dark current densities vs. 1/D characteristics of the Ge0.998Pb0.002 PDs biased at −1V are shown in Fig. 3(b). The dark current density (Jdark) can be divided into the bulk dark current density (Jbulk) and surface leakage current density (Jsurf), which can be written as Jdark = Jbulk + 4Jsurf/D. By linear fitting the dark current densities, Jbulk and Jsurf of the Ge0.998Pb0.002 PDs are calculated as 3.2 A/cm2 and 585 μA/cm, respectively. It is worth noting that the Jsurf of Ge0.998Pb0.002 PDs is relatively low compared with Ge1-xSnx PDs [1,3]. Since the Jsurf is determined by the interface traps of mesa sidewall, it indicates that the Ge0.998Pb0.002 mesa has less interface traps after the etching process.

 figure: Fig. 3

Fig. 3 (a) Room-temperature dark current-voltage (I-V) characteristics of Ge0.998Pb0.002 PDs with different mesa diameters. (b) Room-temperature dark current densities vs. 1/D characteristics of Ge0.998Pb0.002 PDs biased at −1 V.

Download Full Size | PPT Slide | PDF

The room-temperature optical responsivities of the Ge0.998Pb0.002 PDs are measured by an Agilent B1500A semiconductor parameter analyzer, tunable laser (1500-1630 nm), and 2-μm laser. The light is coupled into the PDs perpendicular to the surface with a single-mode fiber. The inset of Fig. 4 shows the current-voltage (I-V) characteristics of Ge0.998Pb0.002 PDs under darkness and 1500-nm laser. The wavelength-dependent responsivity at 1500 to 2000 nm for the Ge0.998Pb0.002 PDs with a mesa diameter of 80 μm at −1V is shown in Fig. 4. As the wavelength increases, the responsivity of Ge0.998Pb0.002 PDs tends to decrease. The responsivity of the Ge0.998Pb0.002 PDs decreases at a much greater rate at larger wavelengths, which is owing to the corresponding bandgap of Ge0.998Pb0.002. The responsivities of the Ge0.998Pb0.002 and Ge1-xSnx PDs are shown in Table 1. It is worth noting that the Ge0.998Pb0.002 PDs show responsivity at 2 μm. This suggests that the GePb PDs with low Pb content can response photons with wavelengths up to 2 μm. However, the Ge0.998Pb0.002 PDs have low responsivity at 1630 nm, compared with Ge1-xSnx PDs. By optimizing the epitaxial conditions and device fabrication process, the responsivity of the GePb PD is expected to be improved.

 figure: Fig. 4

Fig. 4 Wavelength-dependent optical responsivity of Ge0.998Pb0.002 PDs with mesa diameter of 80 μm at −1 V. Wavelength ranges from 1500 to 2000 nm. Inset: current-voltage (I-V) characteristics of Ge0.998Pb0.002 PDs under darkness and 1500-nm laser.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. The optical responsivity and cutoff wavelength of Ge0.998Pb0.002 and Ge1-xSnx PDs.

Spectral-response measurements at zero bias of the Ge0.998Pb0.002 PDs were performed by a Nicolet 6700 Fourier transform infrared spectrometer (FTIR) with a KBr beam splitter and glow-bar source. The GePb PDs were mounted on the cold finger of a liquid-nitrogen cryostat equipped with ZnSe windows. The photocurrent signal was amplified with a low-noise current amplifier and fed into the external detector port of the spectrometer. An extended InGaAs detector (response up to 2500 nm) was tested for calibrating the spectrum response. Figure 5 shows the temperature-dependent photocurrent spectra of 0.2% GePb PDs with 80-μm diameter mesa. A redshift in the spectrum response with increasing temperature is clearly observed for GePb PDs. The photocurrent spectrum of the Ge0.998Pb0.002 PD at 80 K is first monotonically decreased to 1575 nm, which is likely attributed to the direct band edge absorption of the Ge0.998Pb0.002. Then, the photocurrent increases and two peaks appear near 1700 nm. This is mainly owing to the attribution of the indirect L valley of Ge0.998Pb0.002. Although the exact cutoff wavelength is not obtained due to the spectral response limit of the calibration InGaAs detector, it is worth noting that GePb PDs have cutoff wavelengths exceeding 2.5 μm. This is much longer compared with GeSn PDs with Sn fraction below 8% and the details are listed in Table 1. It is speculated that the long cutoff wavelength of GePb PDs may be attributed to the long band tail states existing in GePb alloys, which needs to be studied in the future.

 figure: Fig. 5

Fig. 5 Photocurrent spectra of 80-μm-diameter Ge0.998Pb0.002 PDs at zero bias for different temperatures. Inset: method of determining the bandgap based on absorption edge.

Download Full Size | PPT Slide | PDF

The energy bandgap (Eg) can be obtained by the absorption coefficient (α). α can be extracted from the photocurrent spectra according to the formula P = C × α, where P is the photocurrent intensity and C is a constant [4,6]. The condition for this formula is that αx is much smaller than 1, and x is the device thickness, which is satisfactory for our devices. In addition, the relationship between α and Eg can be written as (αħω)n = A(ħω - Eg), where ħω is the incident photon energy, A is a constant, and index n is a constant that determines the mechanism of the interband transition [4,6,17]. According to a study of the interband transition, n equals 1/2 and 2, respectively, as it corresponds to the transition of the allowed indirect and direct bandgap. Therefore, Eg of the GePb alloy can be evaluated by linearly fitting the functional relationship between (αħω)n and ħω, and the intercept of the X-axis is Eg. After determining the mechanism of the interband transition of the Ge0.998Pb0.002 PDs, the direct Eg of Ge0.998Pb0.002 is estimated by selecting n = 2, as shown in the inset of Fig. 5. The specific Eg values are shown in Fig. 6.

 figure: Fig. 6

Fig. 6 Temperature-dependent Eg of Ge0.998Pb0.002 and Ge [18]. Varshni relationship of Ge0.998Pb0.002 is fitted and drawn. Inset: Band alignment between Ge0.998Pb0.002 and Ge at 300 K.

Download Full Size | PPT Slide | PDF

The temperature-dependent Eg can be described by the Varshni relationship as Eg(T) = E(0)- αT2/(β + T), where E(0) is the bandgap at 0 K, and ɑ and β are fitting parameters [18]. In Fig. 6, the Varshni relationship of Ge0.998Pb0.002 is fitted, and the detailed parameters and band structure at 300 K calculated from the fitted Varshni relationship are shown in the inset of Fig. 6. For comparison, the direct Ge energy bands are also shown [19]. The direct Eg of the Ge0.998Pb0.002 alloy is lower than that of bulk Ge, which indicates that the doping of Pb in Ge to form an alloy successfully reduces Eg.

4. Conclusions

Ge0.998Pb0.002 PDs with GePb layers grown by magnetron sputtering epitaxy were fabricated. The optical responsivities of GePb PDs were measured, and the responsivity reached 1.5 mA/W@2000nm for Ge0.998Pb0.002 PDs. It was found that the GePb PDs can extend the cut-off wavelength up to 2.5 μm with low Pb content. The temperature-dependent photocurrent spectra of Ge0.998Pb0.002 PDs were measured. A redshift of Eg with increasing temperature was observed, and the Varshni relationship of GePb alloys was fitted. This study showed that GePb alloys have promising applications in the field of shortwave infrared detection.

Funding

National Key Research and Development Program of China (Grant No. 2017YFA0206404), the National Natural Science Foundation (Grant No. 61604146), Key Research Program of Frontier Sciences, CAS (Grant NO. QYZDY-SSW-JSC022), Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (2015091).

Acknowledgment

The authors would like to thank Ministry of Science and Technology of China and National Natural Science Foundation for their financial support.

References

1. J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016). [CrossRef]  

2. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011). [CrossRef]  

3. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011). [CrossRef]   [PubMed]  

4. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S. Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016). [CrossRef]   [PubMed]  

5. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012). [CrossRef]  

6. B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014). [CrossRef]   [PubMed]  

7. H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016). [CrossRef]  

8. V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009). [CrossRef]  

9. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009). [CrossRef]  

10. H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018). [CrossRef]  

11. W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).

12. W. Huang, B. Cheng, C. Xue, and H. Yang, “The band structure and optical gain of a new IV-group alloy GePb: A first-principles calculation,” J. Alloys Compd. 701, 816–821 (2017). [CrossRef]  

13. X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019). [CrossRef]  

14. Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016). [CrossRef]  

15. Q. Zhou, C. Zhan, X. Gong, T. K. Chan, T. Osipowicz, S. L. Lim, E. S. Tok, and Y.-C. Yeo, “Germanium-lead alloy with 0.3% substitutional lead formed by pulsed laser induced epitaxy,” in 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), (IEEE, 2014), pp. 79–80. [CrossRef]  

16. J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017). [CrossRef]   [PubMed]  

17. M. Nowak, B. Kauch, and P. Szperlich, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” Rev. Sci. Instrum. 80(4), 046107 (2009). [CrossRef]   [PubMed]  

18. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967). [CrossRef]  

19. C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122(8), 1133–1141 (1975). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
    [Crossref]
  2. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  3. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  4. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S. Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
    [Crossref] [PubMed]
  5. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
    [Crossref]
  6. B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
    [Crossref] [PubMed]
  7. H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
    [Crossref]
  8. V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
    [Crossref]
  9. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
    [Crossref]
  10. H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
    [Crossref]
  11. W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).
  12. W. Huang, B. Cheng, C. Xue, and H. Yang, “The band structure and optical gain of a new IV-group alloy GePb: A first-principles calculation,” J. Alloys Compd. 701, 816–821 (2017).
    [Crossref]
  13. X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
    [Crossref]
  14. Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
    [Crossref]
  15. Q. Zhou, C. Zhan, X. Gong, T. K. Chan, T. Osipowicz, S. L. Lim, E. S. Tok, and Y.-C. Yeo, “Germanium-lead alloy with 0.3% substitutional lead formed by pulsed laser induced epitaxy,” in 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), (IEEE, 2014), pp. 79–80.
    [Crossref]
  16. J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
    [Crossref] [PubMed]
  17. M. Nowak, B. Kauch, and P. Szperlich, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” Rev. Sci. Instrum. 80(4), 046107 (2009).
    [Crossref] [PubMed]
  18. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  19. C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122(8), 1133–1141 (1975).
    [Crossref]

2019 (1)

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

2018 (1)

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

2017 (2)

2016 (4)

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S. Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

2014 (2)

W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

2012 (1)

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

2011 (2)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

2009 (3)

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

M. Nowak, B. Kauch, and P. Szperlich, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” Rev. Sci. Instrum. 80(4), 046107 (2009).
[Crossref] [PubMed]

1975 (1)

C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122(8), 1133–1141 (1975).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Alahmad, H.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

Alher, M.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

Al-Kabi, S.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

Banihashemian, S. F.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

Cao, Q.

Cheng, B.

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

W. Huang, B. Cheng, C. Xue, and H. Yang, “The band structure and optical gain of a new IV-group alloy GePb: A first-principles calculation,” J. Alloys Compd. 701, 816–821 (2017).
[Crossref]

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Cheng, B. W.

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Cong, H.

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

Conley, B. R.

D’Costa, V. R.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

Du, W.

Fang, Y.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

Fenrich, C. S.

Ghetmiri, S. A.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Gollhofer, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Gong, X.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Harris, J. S.

Hu, W.

Huang, W.

W. Huang, B. Cheng, C. Xue, and H. Yang, “The band structure and optical gain of a new IV-group alloy GePb: A first-principles calculation,” J. Alloys Compd. 701, 816–821 (2017).
[Crossref]

W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).

Kaschel, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kasper, E.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kauch, B.

M. Nowak, B. Kauch, and P. Szperlich, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” Rev. Sci. Instrum. 80(4), 046107 (2009).
[Crossref] [PubMed]

Kouvetakis, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

Li, B.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S. Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Li, C.

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).

Lim, S. L.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Liu, X.

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

Liu, Z.

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Margetis, J.

Mathews, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

Menendez, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

Mosleh, A.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

Naseem, H. A.

Nowak, M.

M. Nowak, B. Kauch, and P. Szperlich, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” Rev. Sci. Instrum. 80(4), 046107 (2009).
[Crossref] [PubMed]

Oehme, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Ong, E. B. L.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Osipowicz, T.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Pham, T.

Roucka, R.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmid, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schulze, J.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Soref, R. A.

Su, S.

Sun, G.

Szperlich, P.

M. Nowak, B. Kauch, and P. Szperlich, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” Rev. Sci. Instrum. 80(4), 046107 (2009).
[Crossref] [PubMed]

Thurmond, C. D.

C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122(8), 1133–1141 (1975).
[Crossref]

Tok, E. S.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Tolle, J.

Tran, H.

Vajandar, S.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Wang, Q.

Wang, Q. M.

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Wang, S.

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

Wang, W.

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Widmann, D.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Xie, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

Xue, C.

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

W. Huang, B. Cheng, C. Xue, and H. Yang, “The band structure and optical gain of a new IV-group alloy GePb: A first-principles calculation,” J. Alloys Compd. 701, 816–821 (2017).
[Crossref]

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Xue, C. L.

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Xue, H.

Yang, F.

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Yang, H.

W. Huang, B. Cheng, C. Xue, and H. Yang, “The band structure and optical gain of a new IV-group alloy GePb: A first-principles calculation,” J. Alloys Compd. 701, 816–821 (2017).
[Crossref]

Yeo, Y.-C.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Yu, K.

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Yu, S. Q.

Yu, S.-Q.

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

Zhang, G.

Zhang, X.

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Zheng, J.

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

Zhou, L.

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

Zhou, Q.

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Zuo, Y.

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

J. Zheng, S. Wang, H. Cong, C. S. Fenrich, Z. Liu, C. Xue, C. Li, Y. Zuo, B. Cheng, J. S. Harris, and Q. Wang, “Characterization of a Ge1-x-ySiySnx/Ge1-xSnx multiple quantum well structure grown by sputtering epitaxy,” Opt. Lett. 42(8), 1608–1611 (2017).
[Crossref] [PubMed]

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

J. Zheng, S. Wang, Z. Liu, H. Cong, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy,” Appl. Phys. Lett. 108(3), 033503 (2016).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 113506 (2009).
[Crossref]

IEEE Photonics J. (1)

H. Cong, C. L. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. W. Cheng, and Q. M. Wang, “Silicon Based GeSn p-i-n Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

J. Alloys Compd. (2)

W. Huang, B. Cheng, C. Xue, and H. Yang, “The band structure and optical gain of a new IV-group alloy GePb: A first-principles calculation,” J. Alloys Compd. 701, 816–821 (2017).
[Crossref]

X. Liu, J. Zheng, L. Zhou, Z. Liu, Y. Zuo, C. Xue, and B. Cheng, “Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy,” J. Alloys Compd. 785, 228–231 (2019).
[Crossref]

J. Electrochem. Soc. (1)

C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122(8), 1133–1141 (1975).
[Crossref]

J. Electron. Mater. (1)

H. Alahmad, A. Mosleh, M. Alher, S. F. Banihashemian, S. A. Ghetmiri, S. Al-Kabi, W. Du, B. Li, S.-Q. Yu, and H. A. Naseem, “GePb Alloy Growth Using Layer Inversion Method,” J. Electron. Mater. 47(7), 3733–3740 (2018).
[Crossref]

J. Solid State Sci. Technol. (1)

Q. Zhou, E. B. L. Ong, S. L. Lim, S. Vajandar, T. Osipowicz, X. Gong, E. S. Tok, and Y.-C. Yeo, “Single Crystalline Germanium-Lead Formed by Laser-Induced Epitaxy,” J. Solid State Sci. Technol. 5(6), 353–360 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. B. (1)

W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Phys. B. 443, 43–48 (2014).

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Rev. Sci. Instrum. (1)

M. Nowak, B. Kauch, and P. Szperlich, “Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy,” Rev. Sci. Instrum. 80(4), 046107 (2009).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[Crossref]

Other (1)

Q. Zhou, C. Zhan, X. Gong, T. K. Chan, T. Osipowicz, S. L. Lim, E. S. Tok, and Y.-C. Yeo, “Germanium-lead alloy with 0.3% substitutional lead formed by pulsed laser induced epitaxy,” in 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), (IEEE, 2014), pp. 79–80.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 HR-XRD2θ-ω scans of GePb/Ge substrate along (004) and (224) directions.
Fig. 2
Fig. 2 (a) Schematic cross section and (b) top view of GePb/Ge PD.
Fig. 3
Fig. 3 (a) Room-temperature dark current-voltage (I-V) characteristics of Ge0.998Pb0.002 PDs with different mesa diameters. (b) Room-temperature dark current densities vs. 1/D characteristics of Ge0.998Pb0.002 PDs biased at −1 V.
Fig. 4
Fig. 4 Wavelength-dependent optical responsivity of Ge0.998Pb0.002 PDs with mesa diameter of 80 μm at −1 V. Wavelength ranges from 1500 to 2000 nm. Inset: current-voltage (I-V) characteristics of Ge0.998Pb0.002 PDs under darkness and 1500-nm laser.
Fig. 5
Fig. 5 Photocurrent spectra of 80-μm-diameter Ge0.998Pb0.002 PDs at zero bias for different temperatures. Inset: method of determining the bandgap based on absorption edge.
Fig. 6
Fig. 6 Temperature-dependent Eg of Ge0.998Pb0.002 and Ge [18]. Varshni relationship of Ge0.998Pb0.002 is fitted and drawn. Inset: Band alignment between Ge0.998Pb0.002 and Ge at 300 K.

Tables (1)

Tables Icon

Table 1 The optical responsivity and cutoff wavelength of Ge0.998Pb0.002 and Ge1-xSnx PDs.

Metrics