Abstract

We fabricated a van der Waals heterostructure by stacking together monolayers of MoS2 and ReSe2. Transient absorption measurements were performed to study the dynamics of charge transfer, indirect exciton formation, and indirect exciton recombination. The results show that the heterostructure form a type-II band alignment with the conduction band minimum and valance band maximum located in the MoS2 and ReSe2 layers, respectively. By using different pump-probe configurations, we found that electrons could efficiently transfer from ReSe2 to MoS2 and holes along the opposite direction. Once transferred, the electrons and holes form spatially indirect excitons, which have longer recombination lifetimes than excitons in individual monolayers. These results provide useful information for developing van der Waals heterostructure involving ReSe2 for novel electronic and optoelectronic applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The discovery of graphene in 2004 [1] has stimulated intensive research on a broad range of two-dimensional (2D) materials, among which layered transition metal dichalcogenides (TMDs) have attracted much attention. Most monolayer TMDs studied so far has a direct bandgap and thickness-dependent bandgaps. Their ultrathin thickness and superior electronic and optical properties make them promising materials for optoelectronic and electronic devices such as photodetectors [2–4], solar cells [5–7] and integrated circuits [8–10].

Among the semiconductors in the family of TMDs, MoS2 has attracted the most attention. Bulk MoS2 exhibits an indirect bandgap of about 1.2 eV, while its monolayer form is direct-gap semiconductor with a bandgap of about 1.8 eV [11,12]. ReSe2 is another representative semiconducting TMDs. Theoretical calculations showed that ReSe2 lacks the indirect-to-direct bandgap transition often observed in TMDs [13–16]. It remains an indirect semiconductor from bulk to monolayer forms. Optical spectroscopic measurements indicated that its bandgap increases from 1.26 eV in the bulk to 1.32 eV in the monolayer at 80 K [13]. Monolayer layer ReSe2 transistors have been fabricated, with high mobility and high photoresponsivity [15]. The excitons are strongly polarized with dipole vectors along different crystal directions, which persist from bulk down to monolayer thickness, as shown by polarization-resolved photoluminescence and transmission spectroscopy [17]. Unlike most TMDs with the 2H lattice structure (such as MoS2, MoSe2, WS2, and WSe2), ReSe2 crystals exhibit a distorted 1T lattice structure [15]. Owing to this lattice structure, ReSe2 exhibits strong in-plane anisotropic optical, electronic, and mechanical properties [18–21].

Another research topic of great current interests associated with 2D materials is to develop van der Waals heterostructures by stacking together different monolayers. Since the van der Waals interlayer coupling does not require lattice matching of the component materials, this approach can produce a vast number of new materials [22]. In order to harness desired properties, different combinations of 2D materials have been designed and fabricated to tune the electrical and optical properties of the materials [23–30]. So far, combinations of the most common TMDs materials, such as MoS2, MoSe2, WS2, and WSe2, have been the main focus. The charge transfer properties in these heterostructure have been studied by transient absorption measurements [31–34]. However, the charge transfer in heterostructure involving ReSe2 has not been investigated so far.

In this work, we fabricated a van der Waals heterostructure by stacking together monolayers of MoS2 and ReSe2. Transient absorption measurements were performed to study the dynamics of charge transfer, indirect exciton formation, and indirect exciton recombination. We found evidence of the type-II nature of this heterostructure, which facilitates the transfer of electrons from ReSe2 to MoS2 and holes along the opposite direction. When transferred, electrons and holes form spatially indirect excitons with longer recombination lifetimes than the excitons in individual monolayers. These results provide useful information for developing van der Waals heterostructures using ReSe2.

2. Experimental

Monolayer ReSe2 films were acquired from 6 Carbon Technology Corporation. The films were fabricated by chemical vapor deposition (CVD) and then transferred to a silicon substrate, which is covered by a 300-nm thermally grown SiO2 layer. Two monolayer MoS2 flakes were obtained by micromechanical exfoliation of a bulk crystal onto polydimethylsiloxane (PDMS) substrates using adhesive tapes. One of them was transferred onto the ReSe2 film, another onto another Si/SiO2 substrate. The samples were annealed at 200 °C for 2 h in an Ar environment at a base pressure of about 5 Torr. Because the ReSe2 is a polycrystalline film, the relative crystalline orientation between MoS2 and ReSe2 is unknown.

The photocarrier dynamics in the MoS2-ReSe2 heterostructure and the monolayers of MoS2 and ReSe2 was studied by a transient absorption technique [35]. Figure 1 shows schematically the differential reflection setup used in this study. An 80-MHz mode-locked Ti:sapphire laser generates 100 fs pulses with a central wavelength of 820 nm. This pulse was divided to two parts by a beamsplitter. One part was used to pump an optical parametric oscillator to generate a signal output with a central wavelength in the range of 490-750 nm. The other part was used directly or focused to a beta barium borate crystal to generate its second harmonic at 410 nm. Different combinations of these three pulses were used as pump and probe pulses according to the measurement goals. The pump and probe beams were combined with a beamsplitter and focused to the sample surface through a microscope objective lens. The reflected beam was detected by a silicon photodiode. Color filters were used to prevent the unwanted light from reaching the photodiode. A lock-in amplifier was used to measure the voltage output of the photodiode. A mechanical chopper was placed at the pump path to modulate its intensity at 2 KHz. The voltage detected by the lock-in amplifier synchronized to the chopper is proportional to the differential reflection of the probe, ΔR/R0 = (R-R0)/R0, where R and R0 are the reflection coefficients of the sample at the probe wavelength with the pump presence and without it, respectively. The differential reflection was measured as a function of the probe delay, which is defined as the difference of the arrival times of the probe and pump pulses at the sample. This was achieved by controlling the path length of the pump pulse with a linear motor stage. All the measurements were performed with the samples under ambient condition.

 figure: Fig. 1

Fig. 1 Schematics of the differential reflection setup.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Figure 2(a) shows an optical microscope image of the monolayer ReSe2 film and the MoS2-ReSe2 heterostructure on a Si/SiO2 substrate. The other monolayer MoS2 flake on a separated substrate is shown in Fig. 2(b). According to the predicted band alignment of this heterostructure [36], as shown in Fig. 2(c), MoS2 and ReSe2 form a type-II band alignment with the conduction band minimum (CBM) and valance band maximum (VBM) located in the MoS2 and ReSe2 layers, respectively. Note that in this calculation [36] the interlayer coupling was not included. The band alignment was determined directly from the electron affinity and ionization potential of individual monolayers of MoS2 and ReSe2 (which are labeled in the figure in the unit of eV). Due to this limitation, no values of the band offset are adopted. Figure 2(d) shows the Raman spectrum of the monolayers ReSe2 film. The monolayer ReSe2 have 18 potential Raman modes due to the presence of 12 atoms in each unit cell of the ReSe2 crystal lattice [14]. There more than 10 distinctive Raman peaks have been detected in the Raman spectrum of monolayer ReSe2 film. Raman peak at 125 cm−1 is observed and assigned to the Eg-like, as the vibration is mostly in-plane and symmetric [13]. The peaks located at 160 and 173 cm–1 are ascribed as Ag-like modes since the main vibrations are in the one-dimensional vertical direction [13].

 figure: Fig. 2

Fig. 2 (a) Optical microscope image of the ReSe2 film and MoS2-ReSe2 heterostructure, the heterostructure is in the red dashed box. (b) Optical microscope image of the monolayer MoS2 flake. (c) The predicted band alignment of the MoS2-ReSe2 heterostructure. The numbers are the energy differences from the vacuum level (in electron volts) according to the calculation. (d) Photoluminescence spectra of the samples.

Download Full Size | PPT Slide | PDF

Figure 2(e) shows the photoluminescence (PL) spectra measured from the MoS2, ReSe2, and the MoS2-ReSe2 heterostructure regions under the excitation of a 532-nm continuous-wave laser. The PL yield and the spectral shape of MoS2 are both consistent with previously reported results of monolayer MoS2 [37]. With the same experimental conditions, ReSe2 film shows no detectable PL in this spectral range. For the heterostructure region, the PL peak position is close to that of MoS2. This suggests that the optical bandgap of the MoS2 layer is almost unchanged in the heterostructure. The peak height of the heterostructure is about 50% of that of the individual MoS2 monolayer. This quenching of the MoS2 peak is indicative of charge or energy transfer from MoS2 to ReSe2. The small quenching factor is consistent with results from other heterostructures involving MoS2 [32], and can be attributed to the short exciton lifetime in this material. We also note that the PL from the heterostructure is slightly broader than monolayer MoS2, which could be due to additional scattering of excitons introduced by defects in ReSe2. However, more studies are needed to fully understand this feature.

In the transient absorption measurements, we first investigated the individual monolayers of MoS2 and ReSe2 samples. Figure 3(a) shows the differential reflection signal of MoS2. In this measurement, a 410 nm pump pulse with a fluence of 5.6 μJ cm−2 was used to inject photocarriers in the sample. A 672 nm probe pulse was used to study their temporal dynamics. The rise of the signal can be fit by the integral of a Gaussian function with a full width at half maximum of 370 fs, as indicated by the blue curve over the data points in the inset of Fig. 3(a). The decay of the signal can be fit by a bi-exponential function, as indicated by the red line in Fig. 3(a), with a short and long time constant of about 0.4 and 4.8 ps, respectively. By repeating the measurement with other pump fluences, we found that the decay time constants are independent of the pump fluence while the magnitude increases linearly with the fluence. The short time constant can be attributed to the exciton formation process, based on previous studies [38,39]. The long time constant reflects the recombination lifetime of the excitons [35]. This relatively short lifetime is controlled by nonradiative recombination of excitons. Figure 3(b) shows the differential reflection signal from the monolayer ReSe2. A 672 nm pulses with a peak fluence of 76 μJ cm−2 and an 820 nm pulses were used as the pump and probe, respectively. The decay of the signal can be fit by a single exponential function, as indicated by the red line, with a time constant of about 15 ps. Similarly, this time constant is attributed to the nonradiative recombination lifetime in ReSe2. We note that due to the relatively low signal-to-noise ratio of ReSe2, no multiple exponential fits were attempt.

 figure: Fig. 3

Fig. 3 Photocarrier dynamics in individual monolayers. (a) Differential reflection signal of monolayer MoS2 measured with a 410 nm pump and a 672 nm probe pulses. The red line is a fit by a bi-exponential function. The inset provides a closer look at the data near zero probe delay. (b) Differential reflection signals of monolayer ReSe2 measured with a 672 nm pump and an 820 nm probe pulses. The red line is a fit by an exponential function.

Download Full Size | PPT Slide | PDF

Next, we performed transient absorption measurements with different pump-probe configurations to study the MoS2-ReSe2 heterostructure. We first studied the electron transfer from ReSe2 to MoS2, with a pump-probe configuration shown in the inset of Fig. 4(a). We selectively excite electrons in ReSe2 with an 820 nm pump pulse (blue vertical arrow). The pump photon energy is not enough to excite the MoS2 layer, which has an optical bandgap of 1.85 eV. After been excited, the electrons in ReSe2 are expected to transfer to MoS2 across the van der Waals interface (violet dashed arrow). A 672 nm probe pulse is tuned to the optical bandgap of the MoS2 to monitor the electron transfer process (red vertical arrow). The black symbols in Figs. 4(a) and 4(b) show the obtained signal on long and short time ranges, respectively, with a pump pulse fluence of 22 μJ cm−2. For comparison, no signal was observed from the two monolayer samples, as shown by the purple circles and blue triangles. The lack of signal from these two samples are expected: For MoS2, the pump pulse has no sufficient energy to excite carriers, while for ReSe2, the probe photon energy is too high compared to its bandgap to effectively detect carriers. Hence, the signal from the heterostructure can only be attributed to the electrons that are excited in ReSe2 and sequentially transferred to MoS2. We found that the signal reaches a peak on an ultrashort time scale, which is limited by the time resolution of this measurement. This indicates that the electron transfer is a sub-100 fs process. The decay of the signal can be fit by bi-exponential function, as indicated by the red line in Fig. 4(a), with the short and long time constants of about 0.5 and 21 ps, respectively. The long time constant reflects that the lifetime of the transferred electrons in MoS2 is about 4 times longer than the exciton lifetime in monolayer MoS2, due to the charge separation: Since electrons and holes populate the MoS2 and ReSe2 layers, respectively, their recombination is suppressed. The short time constant could be attributed to the formation of indirect exciton of electrons in MoS2 and holes in ReSe2.

 figure: Fig. 4

Fig. 4 Electron transfer from ReSe2 to MoS2. (a) Black squares show the differential reflection signal from the MoS2-ReS2 heterostructure sample with an 820 nm pump and a 672 nm probe pulses. The red line is a fit. The purple circles and the blue triangles are signals from the MoS2 and ReS2 monolayer samples under the same conditions, respectively, showing lack of signal from these samples, as expected. (b) Same as (a) but over a shorter time range to show the initial dynamics.

Download Full Size | PPT Slide | PDF

Since the bandgap of ReS2 is smaller than MoS2, the observation of electron transfer from ReS2 to MoS2 indicates the band alignment is type-II, with the CBM and VBM located in the MoS2 and ReS2 layers, respectively, which is consistent with theory. Such an alignment should allow transfer of holes from MoS2 to ReS2. To observe this process, we excite the heterostructure sample with a 76 μJ cm−2 and 672-nm pump pulse, and probe the ReS2 layer of the heterostructure with an 820-nm probe. Figures 5(a) and 5(b) show the differential reflection signal in long and short time ranges, respectively. Since the experimental conditions are identical to the measurement of the individual ReS2 monolayer, as shown in Fig. 3(b), the two samples can be directly compared. We find that the signal from the heterostructure is about 3 times higher than the monolayer ReS2. For the MoS2-ReSe2 heterostructure, the pump excites electrons and holes in both layers. Since electrons excited in ReS2 transfer to MoS2, if holes do not transfer from MoS2 to ReS2, the carrier population in ReS2 of the heterostructure would be lower than that of the individual ReS2, and hence the signal would be smaller. Therefore, the observed increase of the signal in the heterostructure shows that holes can transfer from MoS2 to ReS2. The decay of the signal from the heterostructure can be fit by a bi-exponential function, as indicated by the red line in Fig. 5(a), with time constants of about 1.5 and 34 ps, respectively. The short time constant could be associated with cooling of hot holes. Note that in this measurement the probe is not tuned to the excitonic resonance of ReSe2, and hence is not expected to be sensitive to the exciton formation process. However, since holes transfer to ReSe2 with large energy, their energy relaxation from the states being probed to the top of the valence band causes a decrease of the signal. The long time constant reflects the lifetime of the carriers, which is about twice longer than of individual monolayer ReSe2. Similarly, the extended lifetime can be attributed to the separation of electrons and holes due to charge transfer.

 figure: Fig. 5

Fig. 5 Hole transfer from MoS2 to ReSe2. (a) Differential reflection signals of the heterostructure sample measured with a 672 nm pump and an 820 nm probe pulses. The red line is a fit by an exponential function. (b) The same as (a) but in a shorter time range. (c) Peak differential reflection signal from the heterostructure as a function of the pump wavelength (black squares) and the PL spectrum of the MoS2 (blue curve).

Download Full Size | PPT Slide | PDF

In this configuration to study hole transfer, we intend to excite MoS2 with the 670-nm pump. However, since ReS2 has a smaller bandgap, the pump also excites ReS2. Therefore, the 820-nm probe senses holes that could be either injected directly in ReS2 or transferred from MoS2. To separate the two contributions, and thus further confirm existence of hole transfer, we studied how the signal changes when we tune the pump wavelength around the optical bandgap of MoS2. The results are plotted in Fig. 5(c) along with the PL spectrum of MoS2 for comparison. The strong dependence shows clearly the important role of the transferred holes, since the carrier density excited in ReSe2 is not expected to have a strong dependence on the pump wavelength in this small range. In particular, when the pump wavelength is significantly longer than the PL peak energy, the signal is about 1.2 × 10−4. This can be viewed as the contribution from the holes excited in ReSe2 since the MoS2 is not excited. At shorter pump wavelengths that can excite MoS2, the signal reaches to about 3 × 10−4, due to the additional contribution to the hole population in ReS2 from the transfer.

4. Conclusions

We have studied charge transfer in a van der Waals heterostructure composed of monolayers of MoS2 and ReSe2. Transient absorption measurements show strong evidence of ultrafast electron transfer from ReS2 to MoS2 and hole transfer from MoS2 to ReS2. These results show that the band alignment of this heterostructure is type-II with the conduction band minimum located in MoS2 and valence band maximum in ReS2. Separation of electrons and holes in different layers prolonged their recombination lifetime. These results introduce ReSe2 as a new building block to construct van der Waals heterostructure with good charge transfer properties, which can be used in electronic and optoelectronic devices.

Funding

National Key R&D Program of China (2016YFA0202302), the National Natural Science Foundation of China (61527817, 61875236), Initiative Postdocs Supporting Program of China (BX201600013), General Financial Grant from the China Postdoctoral Science Foundation (2017M610756), Overseas Expertise Introduction Center for Discipline Innovation, 111 Center of China, and National Science Foundation of USA (DMR-1505852).

References

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef]   [PubMed]  

2. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012). [CrossRef]   [PubMed]  

3. S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015). [CrossRef]   [PubMed]  

4. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013). [CrossRef]   [PubMed]  

5. M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014). [CrossRef]   [PubMed]  

6. J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014). [CrossRef]   [PubMed]  

7. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997). [CrossRef]  

8. B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2.,” ACS Nano 5(12), 9934–9938 (2011). [CrossRef]   [PubMed]  

9. B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014). [CrossRef]   [PubMed]  

10. R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014). [CrossRef]   [PubMed]  

11. K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-Vi transition-metal dichalcogenides,” J. Phys. Chem. 86(4), 463–467 (1982). [CrossRef]  

12. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010). [CrossRef]   [PubMed]  

13. H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015). [CrossRef]  

14. D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014). [CrossRef]   [PubMed]  

15. S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014). [CrossRef]   [PubMed]  

16. A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013). [CrossRef]   [PubMed]  

17. A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017). [CrossRef]   [PubMed]  

18. S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015). [CrossRef]   [PubMed]  

19. D. B. Seley, M. Nath, and B. A. Parkinson, “ReSe2 nanotubes synthesized from sacrificial templates,” J. Mater. Chem. 19(11), 1532–1534 (2009). [CrossRef]  

20. K. Friemelt, M. C. Luxsteiner, and E. Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der Waals plane,” J. Appl. Phys. 74(8), 5266–5268 (1993). [CrossRef]  

21. C. H. Ho and C. E. Huang, “Optical property of the near band-edge transitions in rhenium disulfide and diselenide,” J. Alloys Compd. 383(1-2), 74–79 (2004). [CrossRef]  

22. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013). [CrossRef]   [PubMed]  

23. Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016). [CrossRef]  

24. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016). [CrossRef]   [PubMed]  

25. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015). [CrossRef]   [PubMed]  

26. C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014). [CrossRef]   [PubMed]  

27. H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016). [CrossRef]   [PubMed]  

28. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017). [CrossRef]   [PubMed]  

29. J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017). [CrossRef]   [PubMed]  

30. K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019). [CrossRef]   [PubMed]  

31. F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015). [CrossRef]   [PubMed]  

32. F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014). [CrossRef]   [PubMed]  

33. X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014). [CrossRef]   [PubMed]  

34. K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016). [CrossRef]   [PubMed]  

35. F. Ceballos and H. Zhao, “Ultrafast laser spectroscopy of two-dimensional materials beyond graphene,” Adv. Funct. Mater. 27(19), 1604509 (2017). [CrossRef]  

36. M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018). [CrossRef]   [PubMed]  

37. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010). [CrossRef]   [PubMed]  

38. F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016). [CrossRef]   [PubMed]  

39. P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
    [Crossref] [PubMed]
  3. S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
    [Crossref] [PubMed]
  4. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  5. M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
    [Crossref] [PubMed]
  6. J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
    [Crossref] [PubMed]
  7. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
    [Crossref]
  8. B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2.,” ACS Nano 5(12), 9934–9938 (2011).
    [Crossref] [PubMed]
  9. B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014).
    [Crossref] [PubMed]
  10. R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
    [Crossref] [PubMed]
  11. K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-Vi transition-metal dichalcogenides,” J. Phys. Chem. 86(4), 463–467 (1982).
    [Crossref]
  12. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  13. H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
    [Crossref]
  14. D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
    [Crossref] [PubMed]
  15. S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
    [Crossref] [PubMed]
  16. A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
    [Crossref] [PubMed]
  17. A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
    [Crossref] [PubMed]
  18. S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
    [Crossref] [PubMed]
  19. D. B. Seley, M. Nath, and B. A. Parkinson, “ReSe2 nanotubes synthesized from sacrificial templates,” J. Mater. Chem. 19(11), 1532–1534 (2009).
    [Crossref]
  20. K. Friemelt, M. C. Luxsteiner, and E. Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der Waals plane,” J. Appl. Phys. 74(8), 5266–5268 (1993).
    [Crossref]
  21. C. H. Ho and C. E. Huang, “Optical property of the near band-edge transitions in rhenium disulfide and diselenide,” J. Alloys Compd. 383(1-2), 74–79 (2004).
    [Crossref]
  22. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  23. Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
    [Crossref]
  24. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016).
    [Crossref] [PubMed]
  25. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
    [Crossref] [PubMed]
  26. C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
    [Crossref] [PubMed]
  27. H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
    [Crossref] [PubMed]
  28. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
    [Crossref] [PubMed]
  29. J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
    [Crossref] [PubMed]
  30. K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
    [Crossref] [PubMed]
  31. F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015).
    [Crossref] [PubMed]
  32. F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
    [Crossref] [PubMed]
  33. X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
    [Crossref] [PubMed]
  34. K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
    [Crossref] [PubMed]
  35. F. Ceballos and H. Zhao, “Ultrafast laser spectroscopy of two-dimensional materials beyond graphene,” Adv. Funct. Mater. 27(19), 1604509 (2017).
    [Crossref]
  36. M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
    [Crossref] [PubMed]
  37. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  38. F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016).
    [Crossref] [PubMed]
  39. P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
    [Crossref] [PubMed]

2019 (1)

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

2018 (1)

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

2017 (5)

F. Ceballos and H. Zhao, “Ultrafast laser spectroscopy of two-dimensional materials beyond graphene,” Adv. Funct. Mater. 27(19), 1604509 (2017).
[Crossref]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

2016 (5)

H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
[Crossref] [PubMed]

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016).
[Crossref] [PubMed]

F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016).
[Crossref] [PubMed]

2015 (5)

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015).
[Crossref] [PubMed]

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

2014 (9)

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014).
[Crossref] [PubMed]

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
[Crossref] [PubMed]

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

2013 (3)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

2012 (1)

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

2011 (1)

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2.,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

2010 (2)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

2009 (1)

D. B. Seley, M. Nath, and B. A. Parkinson, “ReSe2 nanotubes synthesized from sacrificial templates,” J. Mater. Chem. 19(11), 1532–1534 (2009).
[Crossref]

2004 (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

C. H. Ho and C. E. Huang, “Optical property of the near band-edge transitions in rhenium disulfide and diselenide,” J. Alloys Compd. 383(1-2), 74–79 (2004).
[Crossref]

1997 (1)

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

1993 (1)

K. Friemelt, M. C. Luxsteiner, and E. Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der Waals plane,” J. Appl. Phys. 74(8), 5266–5268 (1993).
[Crossref]

1982 (1)

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-Vi transition-metal dichalcogenides,” J. Phys. Chem. 86(4), 463–467 (1982).
[Crossref]

Aivazian, G.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Arefe, G.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Arora, A.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Balicas, L.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Baugher, B. W. H.

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014).
[Crossref] [PubMed]

Bellus, M. Z.

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref] [PubMed]

Bending, S. J.

D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
[Crossref] [PubMed]

Berkdemir, A.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Bernede, J. C.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Bhattacharya, A.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Boulesbaa, A.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Bratschitsch, R.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Bucher, E.

K. Friemelt, M. C. Luxsteiner, and E. Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der Waals plane,” J. Appl. Phys. 74(8), 5266–5268 (1993).
[Crossref]

Carvalho, A.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016).
[Crossref] [PubMed]

Castro Neto, A. H.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016).
[Crossref] [PubMed]

Castro-Beltrán, A.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Ceballos, F.

F. Ceballos and H. Zhao, “Ultrafast laser spectroscopy of two-dimensional materials beyond graphene,” Adv. Funct. Mater. 27(19), 1604509 (2017).
[Crossref]

F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016).
[Crossref] [PubMed]

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref] [PubMed]

Chang, J.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Chang, J. K.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, C. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, H.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

Chen, J.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Chen, L. J.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, W.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Chen, X.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Chen, Y.

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Cheng, H.

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

Cheng, H. C.

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Cheng, R.

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Chernikov, A.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Chiu, H. Y.

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref] [PubMed]

Churchill, H. O. H.

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014).
[Crossref] [PubMed]

Clark, G.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Cobden, D.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

Couturier, G.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Crampin, S.

D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
[Crossref] [PubMed]

Cui, Q.

F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016).
[Crossref] [PubMed]

Cui, S.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Cui, X.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Dai, J.

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

Deilmann, T.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Del Pozo-Zamudio, O.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Drüppel, M.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Duan, X.

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Duscher, G.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Elías, A. L.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Endo, M.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Feng, S.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Flynn, G. W.

H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
[Crossref] [PubMed]

Friemelt, K.

K. Friemelt, M. C. Luxsteiner, and E. Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der Waals plane,” J. Appl. Phys. 74(8), 5266–5268 (1993).
[Crossref]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geohegan, D. B.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Ghimire, N. J.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Gourmelon, E.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, J.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Guo, Q. S.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Gutiérrez, H. R.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Hadouda, H.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Han, M.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Hayashi, T.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

He, J. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Heinz, T. F.

H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
[Crossref] [PubMed]

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hersam, M. C.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Hill, H. M.

H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
[Crossref] [PubMed]

Ho, C. H.

C. H. Ho and C. E. Huang, “Optical property of the near band-edge transitions in rhenium disulfide and diselenide,” J. Alloys Compd. 383(1-2), 74–79 (2004).
[Crossref]

Holleitner, A.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

Hone, J.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hong, X.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Huang, B.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Huang, C. E.

C. H. Ho and C. E. Huang, “Optical property of the near band-edge transitions in rhenium disulfide and diselenide,” J. Alloys Compd. 383(1-2), 74–79 (2004).
[Crossref]

Huang, Y.

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Huber, R.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Ilie, A.

D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
[Crossref] [PubMed]

Jahnke, F.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

Jarillo-Herrero, P.

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014).
[Crossref] [PubMed]

Jariwala, B.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, L.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Jiang, S.

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Jin, C.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Jo, S. M.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Joh, H. I.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Jones, A. M.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Kam, K. K.

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-Vi transition-metal dichalcogenides,” J. Phys. Chem. 86(4), 463–467 (1982).
[Crossref]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kazemi, A. S.

D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
[Crossref] [PubMed]

Kim, D. Y.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Kim, J.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Kim, P.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Kim, Y. A.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2.,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

Klein, J.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

Klement, P.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Korn, T.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Krüger, P.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lee, C. H.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Lee, G. H.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Lee, S.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Lee-Wong, E.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Li, H.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Li, J.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

Li, L. J.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Li, M.

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

Li, S. S.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Li, X.

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

Li, Y.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Lignier, O.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Lin, M. W.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Liu, Q.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Long, A. D.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

López-Urías, F.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Lu, G.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Luxsteiner, M. C.

K. Friemelt, M. C. Luxsteiner, and E. Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der Waals plane,” J. Appl. Phys. 74(8), 5266–5268 (1993).
[Crossref]

Lv, R.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Ma, L.

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

Mahjouri-Samani, M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Mallouk, T. E.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Mandrus, D.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

Mandrus, D. G.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Mao, S.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Merkl, P.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Michaelis de Vasconcellos, S.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Miller, B.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

Mishchenko, A.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016).
[Crossref] [PubMed]

Mornhinweg, J.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Na, S. I.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Nagler, P.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Nath, M.

D. B. Seley, M. Nath, and B. A. Parkinson, “ReSe2 nanotubes synthesized from sacrificial templates,” J. Mater. Chem. 19(11), 1532–1534 (2009).
[Crossref]

Noh, Y. J.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Noky, J.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nuckolls, C.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Pano, B.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

Parkinson, B. A.

D. B. Seley, M. Nath, and B. A. Parkinson, “ReSe2 nanotubes synthesized from sacrificial templates,” J. Mater. Chem. 19(11), 1532–1534 (2009).
[Crossref]

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-Vi transition-metal dichalcogenides,” J. Phys. Chem. 86(4), 463–467 (1982).
[Crossref]

Peeters, F. M.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

Perea-López, N.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Pouzet, J.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Pradhan, N. R.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Pu, H.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Puretzky, A. A.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2.,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

Ray, E. L.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

Rigosi, A. F.

H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
[Crossref] [PubMed]

Rim, K. T.

H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
[Crossref] [PubMed]

Rivera, P.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Rohlfing, M.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Ross, J. S.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Rouleau, C. M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Sahin, H.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

Salardenne, J.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Schaibley, J.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

Schaibley, J. R.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Schmidt, R.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Schneider, R.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Schüller, C.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Seley, D. B.

D. B. Seley, M. Nath, and B. A. Parkinson, “ReSe2 nanotubes synthesized from sacrificial templates,” J. Mater. Chem. 19(11), 1532–1534 (2009).
[Crossref]

Seyler, K.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Seyler, K. L.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shi, S. F.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Shi, Y.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Steinhoff, A.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

Steinleitner, P.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Stiehm, T.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

Su, S. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Sun, Y.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Suslu, A.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

Tan, P. H.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Taniguchi, T.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

Tedd, J.

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Terrones, H.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Terrones, M.

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

Tian, M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Tongay, S.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

Tsai, D. S.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Tsai, M. L.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

van der Zande, A. M.

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

Wang, C.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

Wang, F.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, H.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Wang, K.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Wang, X. M.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Watanabe, K.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

Wei, S. H.

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

Weiss, N.

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Weiss, N. O.

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

Wells, S. A.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Wen, Z.

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Whitwick, M. B.

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2.,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

Wilson, N. P.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

Wolverson, D.

D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
[Crossref] [PubMed]

Wu, C. I.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Wu, H.

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

Wu, J.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Wu, J. B.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Wu, S.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Wurstbauer, U.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

Xia, F. N.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Xia, J. B.

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

Xiao, K.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Xu, X.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Yan, J.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Yang, L.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Yang, S.

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

Yang, Y.

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014).
[Crossref] [PubMed]

Yao, W.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

Yin, Z.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Yoon, M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Yu, H.

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

Yue, Q.

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

Yun, J. M.

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Zeng, X. C.

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

Zhang, H.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Zhang, Q.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Zhang, Y.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, H.

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

F. Ceballos and H. Zhao, “Ultrafast laser spectroscopy of two-dimensional materials beyond graphene,” Adv. Funct. Mater. 27(19), 1604509 (2017).
[Crossref]

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015).
[Crossref] [PubMed]

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref] [PubMed]

Zhong, H. X.

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

ACS Nano (7)

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2.,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, “Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor,” ACS Nano 8(11), 11154–11164 (2014).
[Crossref] [PubMed]

A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers,” ACS Nano 7(6), 5235–5242 (2013).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref] [PubMed]

K. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy,” ACS Nano 10(7), 6612–6622 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

F. Ceballos and H. Zhao, “Ultrafast laser spectroscopy of two-dimensional materials beyond graphene,” Adv. Funct. Mater. 27(19), 1604509 (2017).
[Crossref]

J. Alloys Compd. (1)

C. H. Ho and C. E. Huang, “Optical property of the near band-edge transitions in rhenium disulfide and diselenide,” J. Alloys Compd. 383(1-2), 74–79 (2004).
[Crossref]

J. Appl. Phys. (1)

K. Friemelt, M. C. Luxsteiner, and E. Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der Waals plane,” J. Appl. Phys. 74(8), 5266–5268 (1993).
[Crossref]

J. Mater. Chem. (1)

D. B. Seley, M. Nath, and B. A. Parkinson, “ReSe2 nanotubes synthesized from sacrificial templates,” J. Mater. Chem. 19(11), 1532–1534 (2009).
[Crossref]

J. Phys. Chem. (1)

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-Vi transition-metal dichalcogenides,” J. Phys. Chem. 86(4), 463–467 (1982).
[Crossref]

Nano Lett. (7)

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. Michaelis de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulk like 1T′-ReSe2,” Nano Lett. 17(5), 3202–3207 (2017).
[Crossref] [PubMed]

S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, and S. Tongay, “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering,” Nano Lett. 15(3), 1660–1666 (2015).
[Crossref] [PubMed]

H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, and T. F. Heinz, “Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy,” Nano Lett. 16(8), 4831–4837 (2016).
[Crossref] [PubMed]

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-lived direct and indirect interlayer excitons in van der Waals heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref] [PubMed]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, “Interlayer exciton optoelectronics in a 2D heterostructure p-n junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Nano Res. (1)

H. Zhao, J. B. Wu, H. X. Zhong, Q. S. Guo, X. M. Wang, F. N. Xia, L. Yang, P. H. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Nanoscale (3)

S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, “Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors,” Nanoscale 6(13), 7226–7231 (2014).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7(41), 17523–17528 (2015).
[Crossref] [PubMed]

F. Ceballos, Q. Cui, M. Z. Bellus, and H. Zhao, “Exciton formation in monolayer transition metal dichalcogenides,” Nanoscale 8(22), 11681–11688 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

M. Li, M. Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X. C. Zeng, “A type-I van der Waals heterobilayer of WSe2/MoTe2,” Nanotechnology 29(33), 335203 (2018).
[Crossref] [PubMed]

Nat. Commun. (3)

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref] [PubMed]

R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, “Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics,” Nat. Commun. 5(1), 5143 (2014).
[Crossref] [PubMed]

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, “Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors,” Nat. Commun. 6(1), 8632 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (4)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol. 9(4), 262–267 (2014).
[Crossref] [PubMed]

C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676–681 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref] [PubMed]

Nat. Rev. Mater. (1)

Y. Liu, N. O. Weiss, X. Duan, H. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater. 1(9), 16042 (2016).
[Crossref]

Nature (2)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, “Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers,” Nature 567(7746), 66–70 (2019).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439 (2016).
[Crossref] [PubMed]

Small (1)

J. M. Yun, Y. J. Noh, C. H. Lee, S. I. Na, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, “Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells,” Small 10(12), 2319–2324 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the differential reflection setup.
Fig. 2
Fig. 2 (a) Optical microscope image of the ReSe2 film and MoS2-ReSe2 heterostructure, the heterostructure is in the red dashed box. (b) Optical microscope image of the monolayer MoS2 flake. (c) The predicted band alignment of the MoS2-ReSe2 heterostructure. The numbers are the energy differences from the vacuum level (in electron volts) according to the calculation. (d) Photoluminescence spectra of the samples.
Fig. 3
Fig. 3 Photocarrier dynamics in individual monolayers. (a) Differential reflection signal of monolayer MoS2 measured with a 410 nm pump and a 672 nm probe pulses. The red line is a fit by a bi-exponential function. The inset provides a closer look at the data near zero probe delay. (b) Differential reflection signals of monolayer ReSe2 measured with a 672 nm pump and an 820 nm probe pulses. The red line is a fit by an exponential function.
Fig. 4
Fig. 4 Electron transfer from ReSe2 to MoS2. (a) Black squares show the differential reflection signal from the MoS2-ReS2 heterostructure sample with an 820 nm pump and a 672 nm probe pulses. The red line is a fit. The purple circles and the blue triangles are signals from the MoS2 and ReS2 monolayer samples under the same conditions, respectively, showing lack of signal from these samples, as expected. (b) Same as (a) but over a shorter time range to show the initial dynamics.
Fig. 5
Fig. 5 Hole transfer from MoS2 to ReSe2. (a) Differential reflection signals of the heterostructure sample measured with a 672 nm pump and an 820 nm probe pulses. The red line is a fit by an exponential function. (b) The same as (a) but in a shorter time range. (c) Peak differential reflection signal from the heterostructure as a function of the pump wavelength (black squares) and the PL spectrum of the MoS2 (blue curve).

Metrics